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aggregate-methods Compute summary statistics of subsets of vector-like objects

Description

The S4Vectors package defines aggregate methods for Vector, Rle, and List objects.

Usage

## S4 method for signature 'Vector'
aggregate(x, by, FUN, start=NULL, end=NULL, width=NULL,

frequency=NULL, delta=NULL, ..., simplify=TRUE)

## S4 method for signature 'Rle'
aggregate(x, by, FUN, start=NULL, end=NULL, width=NULL,

frequency=NULL, delta=NULL, ..., simplify=TRUE)

## S4 method for signature 'List'
aggregate(x, by, FUN, start=NULL, end=NULL, width=NULL,

frequency=NULL, delta=NULL, ..., simplify=TRUE)

Arguments

x A Vector, Rle, or List object.

by An object with start, end, and width methods.
If x is a List object, the by parameter can be a IntegerRangesList object to ag-
gregate within the list elements rather than across them. When by is a Inte-
gerRangesList object, the output is either a SimpleAtomicList object, if possi-
ble, or a SimpleList object, if not.

FUN The function, found via match.fun, to be applied to each subset of x.
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start, end, width
The start, end, and width of the subsets. If by is missing, then two of the three
must be supplied and have the same length.

frequency, delta
Optional arguments that specify the sampling frequency and increment within
the subsets (in the same fashion as window from the stats package does).

... Optional arguments to FUN.

simplify A logical value specifying whether the result should be simplified to a vector or
matrix if possible.

Details

Subsets of x can be specified either via the by argument or via the start, end, width, frequency,
and delta arguments.

For example, if start and end are specified, then:

aggregate(x, FUN=FUN, start=start, end=end, ..., simplify=simplify)

is equivalent to:

sapply(seq_along(start),
function(i) FUN(x[start[i]:end[i]], ...), simplify=simplify)

(replace x[start[i]:end[i]] with 2D-style subsetting x[start[i]:end[i], ] if x is a DataFrame
object).

See Also

• The aggregate function in the stats package.

• Vector, Rle, List, and DataFrame objects.

• The start, end, and width generic functions defined in the BiocGenerics package.

Examples

x <- Rle(10:2, 1:9)
aggregate(x, x > 4, mean)
aggregate(x, FUN=mean, start=1:26, width=20)

## Note that aggregate() works on a DataFrame object the same way it
## works on an ordinary data frame:
aggregate(DataFrame(state.x77), list(Region=state.region), mean)
aggregate(weight ~ feed, data=DataFrame(chickwts), mean)

library(IRanges)
by <- IRanges(start=1:26, width=20, names=LETTERS)
aggregate(x, by, is.unsorted)
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Annotated-class Annotated class

Description

The virtual class Annotated is used to standardize the storage of metadata with a subclass.

Details

The Annotated class supports the storage of global metadata in a subclass. This is done through
the metadata slot that stores a list object.

Accessors

In the code snippet below, x is an Annotated object.

metadata(x), metadata(x) <- value: Get or set the list holding arbitrary R objects as annota-
tions. May be, and often is, empty.

Author(s)

P. Aboyoun

See Also

The Vector class, which extends Annotated directly.

Examples

showClass("Annotated") # shows (some of) the known subclasses

## If the IRanges package was not already loaded, this will show
## more subclasses:
library(IRanges)
showClass("Annotated")

bindROWS Combine objects along their ROWS or COLS

Description

bindROWS and bindCOLS are low-level generic functions defined in the S4Vectors package for
binding objects along their 1st or 2nd dimension. They are the workhorses behind higher-level
operations like c(), rbind(), or cbind() on most vector-like or rectangular objects defined in
Bioconductor.

They are not intended to be used directly by the end user.
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Usage

bindROWS(x, objects=list(), use.names=TRUE, ignore.mcols=FALSE, check=TRUE)
bindCOLS(x, objects=list(), use.names=TRUE, ignore.mcols=FALSE, check=TRUE)

Arguments

x An S4 object.

objects A list of S4 objects to bind to x. They should typically (but not necessarily) have
the same class as x.

use.names Should the names on the input objects be propagated? By default they are.

ignore.mcols Should the metadata columns on the input objects be ignored? By defaut they
are not (i.e. they are propagated).

check Should the result object be validated before being returned to the user? By
default it is.

Value

An object of the same class as x.

Author(s)

Hervé Pagès

See Also

• The NROW and NCOL generic functions defined in the BiocGenerics package.

character-utils Some utility functions to operate on strings

Description

Some low-level string utilities to operate on ordinary character vectors. For more advanced string
manipulations, see the Biostrings package.

Usage

unstrsplit(x, sep="")

## more to come...

Arguments

x A list-like object where each list element is a character vector, or a character
vector (identity).

sep A single string containing the separator.



DataFrame-class 7

Details

unstrsplit(x, sep) is equivalent to (but much faster than) sapply(x, paste0, collapse=sep).
It performs the reverse transformation of strsplit( , fixed=TRUE), that is, if x is a character vec-
tor with no NAs and sep a single string, then unstrsplit(strsplit(x, split=sep, fixed=TRUE),
sep) is identical to x. A notable exception to this though is when strsplit finds a match at the
end of a string, in which case the last element of the output (which should normally be an empty
string) is not returned (see ?strsplit for the details).

Value

A character vector with one string per list element in x.

Author(s)

Hervé Pagès

See Also

• The strsplit function in the base package.

Examples

x <- list(A=c("abc", "XY"), B=NULL, C=letters[1:4])
unstrsplit(x)
unstrsplit(x, sep=",")
unstrsplit(x, sep=" => ")

data(islands)
x <- names(islands)
y <- strsplit(x, split=" ", fixed=TRUE)
x2 <- unstrsplit(y, sep=" ")
stopifnot(identical(x, x2))

## But...
names(x) <- x
y <- strsplit(x, split="in", fixed=TRUE)
x2 <- unstrsplit(y, sep="in")
y[x != x2]
## In other words: strsplit() behavior sucks :-/

DataFrame-class DataFrame objects

Description

The DataFrame class extends the RectangularData virtual class supports the storage of any type of
object (with length and [ methods) as columns.
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Details

On the whole, the DataFrame behaves very similarly to data.frame, in terms of construction,
subsetting, splitting, combining, etc. The most notable exceptions have to do with handling of the
row names:

1. The row names are optional. This means calling rownames(x) will return NULL if there are
no row names. Of course, it could return seq_len(nrow(x)), but returning NULL informs, for
example, combination functions that no row names are desired (they are often a luxury when
dealing with large data).

2. The row names are not required to be unique.

3. Subsetting by row names does not use partial matching.

As DataFrame derives from Vector, it is possible to set an annotation string. Also, another
DataFrame can hold metadata on the columns.

For a class to be supported as a column, it must have length and [ methods, where [ sup-
ports subsetting only by i and respects drop=FALSE. Optionally, a method may be defined for
the showAsCell generic, which should return a vector of the same length as the subset of the col-
umn passed to it. This vector is then placed into a data.frame and converted to text with format.
Thus, each element of the vector should be some simple, usually character, representation of the
corresponding element in the column.

Constructor

DataFrame(..., row.names = NULL, check.names = TRUE, stringsAsFactors): Constructs a DataFrame
in similar fashion to data.frame. Each argument in ... is coerced to a DataFrame and com-
bined column-wise. The row names should be given in row.names; otherwise, they are in-
herited from the arguments, as in data.frame. Explicitly passing NULL to row.names ensures
that there are no rownames. If check.names is TRUE, the column names will be checked for
syntactic validity and made unique, if necessary.
To store an object of a class that does not support coercion to DataFrame, wrap it in I(). The
class must still have methods for length and [.
The stringsAsFactors argument is ignored. The coercion of column arguments to DataFrame
determines whether strings become factors.

make_zero_col_DFrame(nrow): Constructs a zero-column DFrame object with nrow rows. In-
tended for developers to use in other packages and typically not needed by the end user.

Accessors

In the following code snippets, x is a DataFrame.

dim(x): Get the length two integer vector indicating in the first and second element the number of
rows and columns, respectively.

dimnames(x), dimnames(x) <- value: Get and set the two element list containing the row names
(character vector of length nrow(x) or NULL) and the column names (character vector of length
ncol(x)).
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Coercion

as(from, "DataFrame"): By default, constructs a new DataFrame with from as its only column.
If from is a matrix or data.frame, all of its columns become columns in the new DataFrame.
If from is a list, each element becomes a column, recycling as necessary. Note that for the
DataFrame to behave correctly, each column object must support element-wise subsetting via
the [ method and return the number of elements with length. It is recommended to use the
DataFrame constructor, rather than this interface.

as.list(x): Coerces x, a DataFrame, to a list.

as.data.frame(x, row.names=NULL, optional=FALSE, make.names=TRUE): Coerces x, a DataFrame,
to a data.frame. Each column is coerced to a data.frame and then column bound together.
If row.names is NULL, they are propagated from x, if it has any. Otherwise, they are inferred
by the data.frame constructor.

Like the as.data.frame() method for class matrix, the method for class DataFrame sup-
ports the make.names argument. make.names can be set to TRUE or FALSE to indicate what
should happen if the row names of x (or the row names supplied via the row.names argument)
are invalid (e.g. contain duplicates). If they are invalid, and make.names is TRUE (the default),
they get "fixed" by going thru make.names(*, unique=TRUE). Otherwise (i.e. if make.names
is FALSE), an error is raised. Note that unlike the method for class matrix, make.names=NA is
not supported.

NOTE: Conversion of x to a data.frame is not supported if x contains any list, SimpleList,
or CompressedList columns.

as(from, "data.frame"): Coerces a DataFrame to a data.frame by calling as.data.frame(from).

as.matrix(x): Coerces the DataFrame to a matrix, if possible.

as.env(x, enclos = parent.frame()): Creates an environment from x with a symbol for each
colnames(x). The values are not actually copied into the environment. Rather, they are
dynamically bound using makeActiveBinding. This prevents unnecessary copying of the
data from the external vectors into R vectors. The values are cached, so that the data is not
copied every time the symbol is accessed.

Subsetting

In the following code snippets, x is a DataFrame.

x[i,j,drop]: Behaves very similarly to the [.data.frame method, except i can be a logical Rle
object and subsetting by matrix indices is not supported. Indices containing NA’s are also not
supported.

x[i,j] <- value: Behaves very similarly to the [<-.data.frame method.

x[[i]]: Behaves very similarly to the [[.data.frame method, except arguments j and exact
are not supported. Column name matching is always exact. Subsetting by matrices is not
supported.

x[[i]] <- value: Behaves very similarly to the [[<-.data.frame method, except argument j is
not supported.
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Displaying

The show() method for DataFrame objects obeys global options showHeadLines and showTailLines
for controlling the number of head and tail rows to display. See ?get_showHeadLines for more in-
formation.

Author(s)

Michael Lawrence

See Also

• DataFrame-combine for combining DataFrame objects.

• DataFrame-utils for other common operations on DataFrame objects.

• TransposedDataFrame objects.

• RectangularData and SimpleList which DataFrame extends directly.

• get_showHeadLines for controlling the number of DataFrame rows to display.

Examples

score <- c(1L, 3L, NA)
counts <- c(10L, 2L, NA)
row.names <- c("one", "two", "three")

df <- DataFrame(score) # single column
df[["score"]]
df <- DataFrame(score, row.names = row.names) #with row names
rownames(df)

df <- DataFrame(vals = score) # explicit naming
df[["vals"]]

# arrays
ary <- array(1:4, c(2,1,2))
sw <- DataFrame(I(ary))

# a data.frame
sw <- DataFrame(swiss)
as.data.frame(sw) # swiss, without row names
# now with row names
sw <- DataFrame(swiss, row.names = rownames(swiss))
as.data.frame(sw) # swiss

# subsetting

sw[] # identity subset
sw[,] # same

sw[NULL] # no columns
sw[,NULL] # no columns
sw[NULL,] # no rows



DataFrame-combine 11

## select columns
sw[1:3]
sw[,1:3] # same as above
sw[,"Fertility"]
sw[,c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)]

## select rows and columns
sw[4:5, 1:3]

sw[1] # one-column DataFrame
## the same
sw[, 1, drop = FALSE]
sw[, 1] # a (unnamed) vector
sw[[1]] # the same
sw[["Fertility"]]

sw[["Fert"]] # should return 'NULL'

sw[1,] # a one-row DataFrame
sw[1,, drop=TRUE] # a list

## duplicate row, unique row names are created
sw[c(1, 1:2),]

## indexing by row names
sw["Courtelary",]
subsw <- sw[1:5,1:4]
subsw["C",] # no partial match (unlike with data.frame)

## row and column names
cn <- paste("X", seq_len(ncol(swiss)), sep = ".")
colnames(sw) <- cn
colnames(sw)
rn <- seq(nrow(sw))
rownames(sw) <- rn
rownames(sw)

## column replacement

df[["counts"]] <- counts
df[["counts"]]
df[[3]] <- score
df[["X"]]
df[[3]] <- NULL # deletion

DataFrame-combine Combine DataFrame objects along their rows or columns, or merge
them
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Description

Various methods are provided to combine DataFrame objects along their rows or columns, or to
merge them.

Details

In the code snippets below, all the input objects are expected to be DataFrame objects.

rbind(...): Creates a new DataFrame object by aggregating the rows of the input objects. Very
similar to rbind.data.frame(), except in the handling of row names. If all elements have
row names, they are concatenated and made unique. Otherwise, the result does not have row
names. The returned DataFrame object inherits its metadata and metadata columns from the
first input object.

cbind(...): Creates a new DataFrame object by aggregating the columns of the input objects.
Very similar to cbind.data.frame(). The returned DataFrame object inherits its metadata
from the first input object. The metadata columns of the returned DataFrame object are ob-
tained by combining the metadata columns of the input object with combineRows().

combineRows(x, ...): combineRows() is a generic function documented in the man page for
RectangularData objects (see ?RectangularData). The method for DataFrame objects be-
haves as documented in that man page.

combineCols(x, ..., use.names=TRUE): combineCols() is a generic function documented in
the man page for RectangularData objects (see ?RectangularData). The method for DataFrame
objects behaves as documented in that man page.

combineUniqueCols(x, ..., use.names=TRUE): This function is documented in the man page
for RectangularData objects (see ?RectangularData).

merge(x, y, ...): Merges two DataFrame objects x and y, with arguments in ... being the same
as those allowed by the base merge(). It is allowed for either x or y to be a data.frame.

Author(s)

Michael Lawrence, Hervé Pagès, and Aaron Lun

See Also

• DataFrame-utils for other common operations on DataFrame objects.

• DataFrame objects.

• TransposedDataFrame objects.

• RectangularData objects.

• cbind and merge in the base package.

Examples

## ---------------------------------------------------------------------
## rbind()
## ---------------------------------------------------------------------

x1 <- DataFrame(A=1:5, B=letters[1:5], C=11:15)
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y1 <- DataFrame(B=c(FALSE, NA, TRUE), C=c(FALSE, NA, TRUE), A=101:103)
rbind(x1, y1)

x2 <- DataFrame(A=Rle(101:103, 3:1), B=Rle(51:52, c(1, 5)))
y2 <- DataFrame(A=runif(2), B=Rle(c("a", "b")))
rbind(x2, y2)

## ---------------------------------------------------------------------
## combineRows()
## ---------------------------------------------------------------------

y3 <- DataFrame(A=runif(2))
combineRows(x2, y3)

y4 <- DataFrame(B=Rle(c("a", "b")), C=runif(2))
combineRows(x2, y4)
combineRows(y4, x2)
combineRows(y4, x2, DataFrame(D=letters[1:3], B=301:303))

## ---------------------------------------------------------------------
## combineCols()
## ---------------------------------------------------------------------

X <- DataFrame(x=1)
Y <- DataFrame(y="A")
Z <- DataFrame(z=TRUE)

combineCols(X, Y, Z, use.names=FALSE)

Y <- DataFrame(y=LETTERS[1:2])
rownames(X) <- "foo"
rownames(Y) <- c("foo", "bar")
rownames(Z) <- "bar"

combineCols(X, Y, Z)

## ---------------------------------------------------------------------
## combineUniqueCols()
## ---------------------------------------------------------------------

X <- DataFrame(x=1)
Y <- DataFrame(y=LETTERS[1:2], dup=1:2)
Z <- DataFrame(z=TRUE, dup=2L)

rownames(X) <- "foo"
rownames(Y) <- c("foo", "bar")
rownames(Z) <- "bar"

combineUniqueCols(X, Y, Z)

Z$dup <- 3
combineUniqueCols(X, Y, Z)
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## ---------------------------------------------------------------------
## merge()
## ---------------------------------------------------------------------

x6 <- DataFrame(key=c(155, 2, 33, 17, 2, 26, 1), aa=1:7)
y6 <- DataFrame(key=1:26, bb=LETTERS)
merge(x6, y6, by="key")
merge(x6, y6, by="key", all.x=TRUE)

DataFrame-comparison DataFrame comparison methods

Description

The DataFrame class provides methods to compare across rows of the DataFrame, including order-
ing and matching. Each DataFrame is effectively treated as a vector of rows.

Usage

## S4 method for signature 'DataFrame'
sameAsPreviousROW(x)

## S4 method for signature 'DataFrame,DataFrame'
match(x, table, nomatch = NA_integer_, incomparables = NULL, ...)

## S4 method for signature 'DataFrame'
order(..., na.last = TRUE, decreasing = FALSE, method = c("auto",

"shell", "radix"))

## S4 method for signature 'DataFrame,DataFrame'
pcompare(x, y)

## S4 method for signature 'DataFrame,DataFrame'
e1 == e2

## S4 method for signature 'DataFrame,DataFrame'
e1 <= e2

Arguments

x, table, y, e1, e2
A DataFrame object.

nomatch, incomparables
See ?base::match.

... For match, further arguments to pass to match.
For order, one or more DataFrame objects.

decreasing, na.last, method
See ?base::order.
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Details

The treatment of a DataFrame as a “vector of rows” is useful in many cases, e.g., when each row
is a record that needs to be ordered or matched. The methods provided here allow the use of all
methods described in ?Vector-comparison, including sorting, matching, de-duplication, and so
on.

Careful readers will notice this behaviour differs from the usual semantics of a data.frame, which
acts as a list-like vector of columns. This discrepancy rarely causes problems, as it is not particularly
common to compare columns of a data.frame in the first place.

Note that a match method for DataFrame objects is explicitly defined to avoid calling the corre-
sponding method for List objects, which would yield the (undesired) list-like semantics. The same
rationale is behind the explicit definition of <= and == despite the availability of pcompare.

Value

For sameAsPreviousROW: see sameAsPreviousROW.

For match: see match.

For order: see order.

For pcompare, == and <=: see pcompare.

Author(s)

Aaron Lun

Examples

# Mocking up a DataFrame.
DF <- DataFrame(

A=sample(LETTERS, 100, replace=TRUE),
B=sample(5, 100, replace=TRUE)

)

# Matching:
match(DF, DF[1:10,])
selfmatch(DF)
unique(DF)

# Ordering, alone and with other vectors:
sort(DF)
order(DF, runif(nrow(DF)))

# Parallel comparison:
DF==DF
DF==DF[1,]
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DataFrame-utils Common operations on DataFrame objects

Description

Common operations on DataFrame objects.

Splitting

In the code snippet below, x is a DataFrame object.

split(x, f, drop = FALSE): Splits x into a SplitDataFrameList object, according to f, dropping
elements corresponding to unrepresented levels if drop is TRUE.

Looping

In the code snippet below, x is a DataFrame object.

by(data, INDICES, FUN, ..., simplify = TRUE): Apply FUN to each group of data, a DataFrame,
formed by the factor (or list of factors) INDICES. Exactly the same contract as as.data.frame.

Subsetting based on NA content

In the code snippets below, x is a DataFrame object.

na.omit(object): Returns a subset with incomplete cases removed.

na.exclude(object): Returns a subset with incomplete cases removed (but to be included with
NAs in statistical results).

is.na(x): Returns a logical matrix indicating which cells are missing.

complete.cases(x): Returns a logical vector identifying which cases have no missing values.

Transforming

In the code snippet below, x is a DataFrame object.

transform(‘_data‘, ...): adds or replaces columns based on expressions in .... See transform.

Statistical modeling with DataFrame

A number of wrappers are implemented for performing statistical procedures, such as model fitting,
with DataFrame objects.

Tabulation:
xtabs(formula = ~., data, subset, na.action, exclude = c(NA, NaN), drop.unused.levels = FALSE):

Like the original xtabs, except data is a DataFrame.

Author(s)

Michael Lawrence
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See Also

• by in the base package.

• na.omit in the stats package.

• transform in the base package.

• xtabs in the stats package.

• splitAsList in this package (S4Vectors).

• SplitDataFrameList objects in the IRanges package.

• DataFrame objects.

Examples

## split
sw <- DataFrame(swiss)
swsplit <- split(sw, sw[["Education"]])

## rbind & cbind
do.call(rbind, as.list(swsplit))
cbind(DataFrame(score), DataFrame(counts))

df <- DataFrame(as.data.frame(UCBAdmissions))
xtabs(Freq ~ Gender + Admit, df)

DataFrameFactor-class DataFrameFactor objects

Description

The DataFrameFactor class is a subclass of the Factor class where the levels are the rows of a
DataFrame. It provides a few methods to mimic the behavior of an actual DataFrame while retaining
the memory efficiency of the Factor structure.

Usage

DataFrameFactor(x, levels, index=NULL, ...) # constructor function

Arguments

x, levels DataFrame objects. At least one of x and levels must be specified. If index is
NULL, both can be specified.
When levels is specified, it must be a DataFrame with no duplicate rows (i.e.
anyDuplicated(levels) must return 0).
See ?Factor for more details.

index NULL or an integer (or numeric) vector of valid positive indices (no NAs) into
levels. See ?Factor for details.

... Optional metadata columns.
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Value

A DataFrameFactor object.

Accessors

DataFrameFactor objects support the same set of accessors as Factor objects. In addition, it mim-
ics some aspects of the DataFrame interface. The general principle is that, for these methods, a
DataFrameFactor x behaves like the expanded DataFrame unfactor(x).

• x$name will return column name from levels(x) and expand it according to the indices in x.

• x[i, j, ..., drop=TRUE] will return a new DataFrameFactor subsetted to entries i, where
the levels are subsetted by column to contain only columns j. If the resulting levels only have
one column and drop=TRUE, the expanded values of the column are returned directly.

• dim(x) will return the length of the DataFrameFactor and the number of columns in its levels.

• dimnames(x) will return the names of the DataFrameFactor and the column names in its
levels.

Caution

The DataFrame-like methods implemented here are for convenience only. Users should not assume
that the DataFrameFactor complies with other aspects of the DataFrame interface, due to funda-
mental differences between a DataFrame and the Factor parent class, e.g., in the interpretation of
their “length”. Outside of the methods listed above, the DataFrameFactor is not guaranteed to work
as a drop-in replacement for a DataFrame - use unfactor(x) instead.

Author(s)

Aaron Lun

See Also

Factor objects for the parent class.

Examples

df <- DataFrame(X=sample(5, 100, replace=TRUE), Y=sample(c("A", "B"), 100, replace=TRUE))
dffac <- DataFrameFactor(df)
dffac

dffac$X
dffac[,c("Y", "X")]
dffac[1:10,"X"]
colnames(dffac)

# The usual Factor methods may also be used:
unfactor(dffac)
levels(dffac)
as.integer(dffac)
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expand Unlist the list-like columns of a DataFrame object

Description

expand transforms a DataFrame object into a new DataFrame object where the columns specified
by the user are unlisted. The transformed DataFrame object has the same colnames as the original
but typically more rows.

Usage

## S4 method for signature 'DataFrame'
expand(x, colnames, keepEmptyRows = FALSE, recursive = TRUE)

Arguments

x A DataFrame object with list-like columns or a Vector object with list-like meta-
data columns (i.e. with list-like columns in mcols(x)).

colnames A character or numeric vector containing the names or indices of the list-like
columns to unlist. The order in which columns are unlisted is controlled by
the column order in this vector. This defaults to all of the recursive (list-like)
columns in x.

keepEmptyRows A logical indicating if rows containing empty list elements in the specified
colnames should be retained or dropped. When TRUE, list elements are replaced
with NA and all rows are kept. When FALSE, rows with empty list elements in
the colnames columns are dropped.

recursive If TRUE, expand each column recursively, with the result representing their carte-
sian product. If FALSE, expand all of the columns in parallel, which requires that
they all share the same skeleton.

Value

A DataFrame object that has been expanded row-wise to match the length of the unlisted columns.

See Also

• DataFrame objects.

Examples

library(IRanges)
aa <- CharacterList("a", paste0("d", 1:2), paste0("b", 1:3), c(), "c")
bb <- CharacterList(paste0("sna", 1:2),"foo", paste0("bar",1:3),c(),"hica")
df <- DataFrame(aa=aa, bb=bb, cc=11:15)

## Expand by all list-like columns (aa, bb), dropping rows with empty
## list elements:
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expand(df)

## Expand the aa column only:
expand(df, colnames="aa", keepEmptyRows=TRUE)
expand(df, colnames="aa", keepEmptyRows=FALSE)

## Expand the aa and then the bb column:
expand(df, colnames=c("aa","bb"), keepEmptyRows=TRUE)
expand(df, colnames=c("aa","bb"), keepEmptyRows=FALSE)

## Expand the aa and dd column in parallel:
df$dd <- relist(seq_along(unlist(aa)), aa)
expand(df, colnames=c("aa","dd"), recursive=FALSE)

Factor-class Factor objects

Description

The Factor class serves a similar role as factor in base R (a.k.a. ordinary factor) except that the
levels of a Factor object can be any vector-like object, that is, they can be an ordinary vector or a
Vector derivative, or even an ordinary factor or another Factor object.

A notable difference with ordinary factors is that Factor objects cannot contain NAs, at least for now.

Usage

Factor(x, levels, index=NULL, ...) # constructor function

Arguments

x, levels At least one of x and levels must be specified. If index is NULL, both can be
specified.
When levels is specified, it must be a vector-like object (see above) with no
duplicates (i.e. anyDuplicated(levels) must return 0).
When x and levels are both specified, they should typically have the same class
(or, at least, match(x, levels) must work on them), and all the elements in x
must be represented in levels (i.e. the integer vector returned by match(x,
levels) should contain no NAs). See Details section below.

index NULL or an integer (or numeric) vector of valid positive indices (no NAs) into
levels. See Details section below.

... Optional metadata columns.

Details

There are 4 different ways to use the Factor() constructor function:
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1. Factor(x, levels) (i.e. index is missing): In this case match(x, levels) is used internally
to encode x as a Factor object. An error is returned if some elements in x cannot be matched
to levels so it’s important to make sure that all the elements in x are represented in levels
when doing Factor(x, levels).

2. Factor(x) (i.e. levels and index are missing): This is equivalent to Factor(x, levels=unique(x)).

3. Factor(levels=levels, index=index) (i.e. x is missing): In this case the encoding of the
Factor object is supplied via index, that is, index must be an integer (or numeric) vector of
valid positive indices (no NAs) into levels. This is the most efficient way to construct a Factor
object.

4. Factor(levels=levels) (i.e. x and index are missing): This is a convenient way to con-
struct a 0-length Factor object with the specified levels. In other words, it’s equivalent to
Factor(levels=levels, index=integer(0)).

Value

A Factor object.

Accessors

Factor objects support the same set of accessors as ordinary factors. That is:

• length(x) to get the length of Factor object x.

• names(x) and names(x) <- value to get and set the names of Factor object x.

• levels(x) and levels(x) <- value to get and set the levels of Factor object x.

• nlevels(x) to get the number of levels of Factor object x.

• as.integer(x) to get the encoding of Factor object x. Note that length(as.integer(x))
and names(as.integer(x)) are the same as length(x) and names(x), respectively.

In addition, because Factor objects are Vector derivatives, they support the mcols() and metadata()
getters and setters.

Decoding a Factor

unfactor(x) can be used to decode Factor object x. It returns an object of the same class as
levels(x) and same length as x. Note that it is the analog of as.character() on ordinary factors,
with the notable difference that unfactor(x) propagates the names on x.

For convenience, unfactor(x) also works on ordinary factor x.

unfactor() supports extra arguments use.names and ignore.mcols to control whether the names
and metadata columns on the Factor object to decode should be propagated or not. By default they
are propagated, that is, the default values for use.names and ignore.mcols are TRUE and FALSE,
respectively.

Coercion

From vector or Vector to Factor: coercion of a vector-like object x to Factor is supported via as(x,
"Factor") and is equivalent to Factor(x). There are 2 IMPORTANT EXCEPTIONS to this:
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1. If x is an ordinary factor, as(x, "Factor") returns a Factor with the same levels, encoding,
and names, as x. Note that after coercing an ordinary factor to Factor, going back to factor
again (with as.factor()) restores the original object with no loss.

2. If x is a Factor object, as(x, "Factor") is either a no-op (when x is a Factor instance), or a
demotion to Factor (when x is a Factor derivative like GRangesFactor).

From Factor to integer: as.integer(x) is supported on Factor object x and returns its encoding
(see Accessors section above).

From Factor to factor: as.factor(x) is supported on Factor object x and returns an ordinary factor
where the levels are as.character(levels(x)).

From Factor to character: as.character(x) is supported on Factor object x and is equivalent to
unfactor(as.factor(x)), which is also equivalent to as.character(unfactor(x)).

Subsetting

A Factor object can be subsetted with [, like an ordinary factor.

Concatenation

2 or more Factor objects can be concatenated with c(). Note that, unlike with ordinary factors, c()
on Factor objects preserves the class i.e. it returns a Factor object. In other words, c() acts as an
endomorphism on Factor objects.

The levels of c(x, y) are obtained by appending to levels(x) the levels in levels(y) that are
"new" i.e. that are not already in levels(x).

append(), which is implemented on top of c(), also works on Factor objects.

Comparing & Ordering

Factor objects support comparing (e.g. ==, !=, <=, <, match()) and ordering (e.g. order(), sort(),
rank()) operations. All these operations behave like they would on the unfactored versions of their
operands.

For example F1 <= F2, match(F1, F2), and sort(F1), are equivalent to unfactor(F1) <= unfactor(F2),
match(unfactor(F1), unfactor(F2)), and sort(unfactor(F1)), respectively.

Author(s)

Hervé Pagès, with contributions from Aaron Lun

See Also

• factor in base R.

• GRangesFactor objects in the GenomicRanges package.

• IRanges objects in the IRanges package.

• Vector objects for the parent class.

• anyDuplicated in the BiocGenerics package.
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Examples

showClass("Factor") # Factor extends Vector

## ---------------------------------------------------------------------
## CONSTRUCTOR & ACCESSORS
## ---------------------------------------------------------------------
library(IRanges)
set.seed(123)
ir0 <- IRanges(sample(5, 8, replace=TRUE), width=10,

names=letters[1:8], ID=paste0("ID", 1:8))

## Use explicit levels:
ir1 <- IRanges(1:6, width=10)
F1 <- Factor(ir0, levels=ir1)
F1
length(F1)
names(F1)
levels(F1) # ir1
nlevels(F1)
as.integer(F1) # encoding

## If we don't specify the levels, they'll be set to unique(ir0):
F2 <- Factor(ir0)
F2
length(F2)
names(F2)
levels(F2) # unique(ir0)
nlevels(F2)
as.integer(F2)

## ---------------------------------------------------------------------
## DECODING
## ---------------------------------------------------------------------
unfactor(F1)

stopifnot(identical(ir0, unfactor(F1)))
stopifnot(identical(ir0, unfactor(F2)))

unfactor(F1, use.names=FALSE)
unfactor(F1, ignore.mcols=TRUE)

## ---------------------------------------------------------------------
## COERCION
## ---------------------------------------------------------------------
F2b <- as(ir0, "Factor") # same as Factor(ir0)
stopifnot(identical(F2, F2b))

as.factor(F2)
as.factor(F1)

as.character(F1) # same as unfactor(as.factor(F1)),
# and also same as as.character(unfactor(F1))
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## On an ordinary factor 'f', 'as(f, "Factor")' and 'Factor(f)' are
## NOT the same:
f <- factor(sample(letters, 500, replace=TRUE), levels=letters)
as(f, "Factor") # same levels as 'f'
Factor(f) # levels **are** 'f'!

stopifnot(identical(f, as.factor(as(f, "Factor"))))

## ---------------------------------------------------------------------
## CONCATENATION
## ---------------------------------------------------------------------
ir3 <- IRanges(c(5, 2, 8:6), width=10)
F3 <- Factor(levels=ir3, index=2:4)
F13 <- c(F1, F3)
F13
levels(F13)

stopifnot(identical(c(unfactor(F1), unfactor(F3)), unfactor(F13)))

## ---------------------------------------------------------------------
## COMPARING & ORDERING
## ---------------------------------------------------------------------
F1 == F2 # same as unfactor(F1) == unfactor(F2)

order(F1) # same as order(unfactor(F1))
order(F2) # same as order(unfactor(F2))

## The levels of the Factor influence the order of the table:
table(F1)
table(F2)

FilterMatrix-class Matrix for Filter Results

Description

A FilterMatrix object is a matrix meant for storing the logical output of a set of FilterRules,
where each rule corresponds to a column. The FilterRules are stored within the FilterMatrix
object, for the sake of provenance. In general, a FilterMatrix behaves like an ordinary matrix.

Accessor methods

In the code snippets below, x is a FilterMatrix object.

filterRules(x): Get the FilterRules corresponding to the columns of the matrix.

Constructor

FilterMatrix(matrix, filterRules): Constructs a FilterMatrix, from a given matrix and
filterRules. Not usually called by the user, see evalSeparately.
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Utilities

summary(object, discarded = FALSE, percent = FALSE): Returns a numeric vector containing
the total number of records (nrow), the number passed by each filter, and the number of records
that passed every filter. If discarded is TRUE, then the numbers are inverted (i.e., the values
are subtracted from the number of rows). If percent is TRUE, then the numbers are percent of
total.

Author(s)

Michael Lawrence

See Also

• evalSeparately is the typical way to generate this object.

• FilterRules objects.

FilterRules-class Collection of Filter Rules

Description

A FilterRules object is a collection of filter rules, which can be either expression or function
objects. Rules can be disabled/enabled individually, facilitating experimenting with different com-
binations of filters.

Details

It is common to split a dataset into subsets during data analysis. When data is large, however,
representing subsets (e.g. by logical vectors) and storing them as copies might become too costly
in terms of space. The FilterRules class represents subsets as lightweight expression and/or
function objects. Subsets can then be calculated when needed (on the fly). This avoids copying
and storing a large number of subsets. Although it might take longer to frequently recalculate a
subset, it often is a relatively fast operation and the space savings tend to be more than worth it
when data is large.

Rules may be either expressions or functions. Evaluating an expression or invoking a function
should result in a logical vector. Expressions are often more convenient, but functions (i.e. closures)
are generally safer and more powerful, because the user can specify the enclosing environment. If
a rule is an expression, it is evaluated inside the envir argument to the eval method (see below).
If a function, it is invoked with envir as its only argument. See examples.

Accessor methods

In the code snippets below, x is a FilterRules object.

active(x): Get the logical vector of length length(x), where TRUE for an element indicates that
the corresponding rule in x is active (and inactive otherwise). Note that names(active(x))
is equal to names(x).
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active(x) <- value: Replace the active state of the filter rules. If value is a logical vector, it
should be of length length(x) and indicate which rules are active. Otherwise, it can be either
numeric or character vector, in which case it sets the indicated rules (after dropping NA’s) to
active and all others to inactive. See examples.

Constructor

FilterRules(exprs = list(), ..., active = TRUE): Constructs a FilterRules with the rules
given in the list exprs or in .... The initial active state of the rules is given by active,
which is recycled as necessary. Elements in exprs may be either character (parsed into an
expression), a language object (coerced to an expression), an expression, or a function that
takes at least one argument. IMPORTANTLY, all arguments in ... are quote()’d and then
coerced to an expression. So, for example, character data is only parsed if it is a literal.
The names of the filters are taken from the names of exprs and ..., if given. Otherwise,
the character vectors take themselves as their name and the others are deparsed (before any
coercion). Thus, it is recommended to always specify meaningful names. In any case, the
names are made valid and unique.

Subsetting and Replacement

In the code snippets below, x is a FilterRules object.

x[i]: Subsets the filter rules using the same interface as for Vector.

x[[i]]: Extracts an expression or function via the same interface as for List.

x[[i]] <- value: The same interface as for List. The default active state for new rules is TRUE.

Concatenation

In the code snippets below, x is a FilterRules object.

x & y: Appends the rules in y to the rules in x.

c(x, ..., recursive = FALSE): Concatenates the FilterRule instances in ... onto the end of
x.

append(x, values, after = length(x)): Appends the values FilterRules instance onto x at
the index given by after.

Evaluating

eval(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else baseenv()):
Evaluates a FilterRules instance (passed as the expr argument). Expression rules are eval-
uated in envir, while function rules are invoked with envir as their only argument. The
evaluation of a rule should yield a logical vector. The results from the rule evaluations are
combined via the AND operation (i.e. &) so that a single logical vector is returned from eval.

evalSeparately(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else baseenv()):
Evaluates separately each rule in a FilterRules instance (passed as the expr argument). Ex-
pression rules are evaluated in envir, while function rules are invoked with envir as their
only argument. The evaluation of a rule should yield a logical vector. The results from the
rule evaluations are combined into a logical matrix, with a column for each rule. This is
essentially the parallel evaluator, while eval is the serial evaluator.
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subsetByFilter(x, filter): Evaluates filter on x and uses the result to subset x. The result
contains only the elements in x for which filter evaluates to TRUE.

summary(object, subject): Returns an integer vector with the number of elements in subject
that pass each rule in object, along with a count of the elements that pass all filters.

Filter Closures

When a closure (function) is included as a filter in a FilterRules object, it is converted to a
FilterClosure, which is currently nothing more than a marker class that extends function. When
a FilterClosure filter is extracted, there are some accessors and utilities for manipulating it:

params: Gets a named list of the objects that are present in the enclosing environment (without
inheritance). This assumes that a filter is constructed via a constructor function, and the objects
in the frame of the constructor (typically, the formal arguments) are the parameters of the filter.

Author(s)

Michael Lawrence

See Also

FilterMatrix objects for storing the logical output of a set of FilterRules objects.

Examples

## constructing a FilterRules instance

## an empty set of filters
filters <- FilterRules()

## as a simple character vector
filts <- c("peaks", "promoters")
filters <- FilterRules(filts)
active(filters) # all TRUE

## with functions and expressions
filts <- list(peaks = expression(peaks), promoters = expression(promoters),

find_eboxes = function(rd) rep(FALSE, nrow(rd)))
filters <- FilterRules(filts, active = FALSE)
active(filters) # all FALSE

## direct, quoted args (character literal parsed)
filters <- FilterRules(under_peaks = peaks, in_promoters = "promoters")
filts <- list(under_peaks = expression(peaks),

in_promoters = expression(promoters))

## specify both exprs and additional args
filters <- FilterRules(filts, diffexp = de)

filts <- c("promoters", "peaks", "introns")
filters <- FilterRules(filts)
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## evaluation
df <- DataFrame(peaks = c(TRUE, TRUE, FALSE, FALSE),

promoters = c(TRUE, FALSE, FALSE, TRUE),
introns = c(TRUE, FALSE, FALSE, FALSE))

eval(filters, df)
fm <- evalSeparately(filters, df)
identical(filterRules(fm), filters)
summary(fm)
summary(fm, percent = TRUE)
fm <- evalSeparately(filters, df, serial = TRUE)

## set the active state directly

active(filters) <- FALSE # all FALSE
active(filters) <- TRUE # all TRUE
active(filters) <- c(FALSE, FALSE, TRUE)
active(filters)["promoters"] <- TRUE # use a filter name

## toggle the active state by name or index

active(filters) <- c(NA, 2) # NA's are dropped
active(filters) <- c("peaks", NA)

Hits-class Hits objects

Description

The Hits class is a container for representing a set of hits between a set of left nodes and a set of
right nodes. Note that only the hits are stored in the object. No information about the left or right
nodes is stored, except their number.

For example, the findOverlaps function, defined and documented in the IRanges package, returns
the hits between the query and subject arguments in a Hits object.

Usage

## Constructor functions

Hits(from=integer(0), to=integer(0), nLnode=0L, nRnode=0L, ...,
sort.by.query=FALSE)

SelfHits(from=integer(0), to=integer(0), nnode=0L, ...,
sort.by.query=FALSE)

Arguments

from, to 2 integer vectors of the same length. The values in from must be >= 1 and <=
nLnode. The values in to must be >= 1 and <= nRnode.
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nLnode, nRnode Number of left and right nodes.
... Metadata columns to set on the Hits object. All the metadata columns must be

vector-like objects of the same length as from and to.
sort.by.query Should the hits in the returned object be sorted by query? If yes, then a Sorted-

ByQueryHits object is returned (SortedByQueryHits is a subclass of Hits).
nnode Number of nodes.

Accessors

In the code snippets below, x is a Hits object.

length(x): get the number of hits
from(x): Equivalent to as.data.frame(x)[[1]].
to(x): Equivalent to as.data.frame(x)[[2]].
nLnode(x), nrow(x): get the number of left nodes
nRnode(x), ncol(x): get the number of right nodes
countLnodeHits(x): Counts the number of hits for each left node, returning an integer vector.
countRnodeHits(x): Counts the number of hits for each right node, returning an integer vector.

The following accessors are just aliases for the above accessors:

queryHits(x): alias for from(x).
subjectHits(x): alias for to(x).
queryLength(x): alias for nLnode(x).
subjectLength(x): alias for nRnode(x).
countQueryHits(x): alias for countLnodeHits(x).
countSubjectHits(x): alias for countRnodeHits(x).

Coercion

In the code snippets below, x is a Hits object.

as.matrix(x): Coerces x to a two column integer matrix, with each row representing a hit between
a left node (first column) and a right node (second column).

as.table(x): Counts the number of hits for each left node in x and outputs the counts as a table.
as(x, "DataFrame"): Creates a DataFrame by combining the result of as.matrix(x) with mcols(x).
as.data.frame(x): Attempts to coerce the result of as(x, "DataFrame") to a data.frame.

Subsetting

In the code snippets below, x is a Hits object.

x[i]: Return a new Hits object made of the elements selected by i.
x[i, j]: Like the above, but allow the user to conveniently subset the metadata columns thru j.
x[i] <- value: Replacement version of x[i].

See ?`[` in this package (the S4Vectors package) for more information about subsetting Vector
derivatives and for an important note about the x[i, j] form.
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Concatenation

c(x, ..., ignore.mcols=FALSE): Concatenate Hits object x and the Hits objects in ... together.
See ?c in this package (the S4Vectors package) for more information about concatenating
Vector derivatives.

Other transformations

In the code snippets below, x is a Hits object.

t(x): Transpose x by interchanging the left and right nodes. This allows, for example, counting
the number of hits for each right node using as.table.

remapHits(x, Lnodes.remapping=NULL, new.nLnode=NA, Rnodes.remapping=NULL, new.nRnode=NA):
Only supports SortedByQueryHits objects at the moment.
Remaps the left and/or right nodes in x. The left nodes are remapped thru the map specified
via the Lnodes.remapping and new.nLnode arguments. The right nodes are remapped thru
the map specified via the Rnodes.remapping and new.nRnode arguments.
Lnodes.remapping must represent a function defined on the 1..M interval that takes values
in the 1..N interval, where N is nLnode(x) and M is the value specified by the user via the
new.nLnode argument. Note that this mapping function doesn’t need to be injective or sur-
jective. Also it is not represented by an R function but by an integer vector of length M
with no NAs. More precisely Lnodes.remapping can be NULL (identity map), or a vec-
tor of nLnode(x) non-NA integers that are >= 1 and <= new.nLnode, or a factor of length
nLnode(x) with no NAs (a factor is treated as an integer vector, and, if missing, new.nLnode
is taken to be its number of levels). Note that a factor will typically be used to represent a
mapping function that is not injective.
The same applies to the Rnodes.remapping.
remapHits returns a Hits object where from(x) and to(x) have been remapped thru the 2
specified maps. This remapping is actually only the 1st step of the transformation, and is
followed by 2 additional steps: (2) the removal of duplicated hits, and (3) the reordering of
the hits (first by query hits, then by subject hits). Note that if the 2 maps are injective then
the remapping won’t introduce duplicated hits, so, in that case, step (2) is a no-op (but is still
performed). Also if the "query map" is strictly ascending and the "subject map" ascending
then the remapping will preserve the order of the hits, so, in that case, step (3) is also a no-op
(but is still performed).

breakTies(x, method=c("first", "last"), rank): Restrict the hits so that every left node maps
to at most one right node. If method is “first”, for each left node, select the edge with the first
(lowest rank) right node, if any. If method is “last”, select the edge with the last (highest rank)
right node. If rank is not missing, it should be a formula specifying an alternative ranking
according to its terms (see rank).

SelfHits

A SelfHits object is a Hits object where the left and right nodes are identical. For a SelfHits object
x, nLnode(x) is equal to nRnode(x). The object can be seen as an oriented graph where nLnode
is the nb of nodes and the hits are the (oriented) edges. SelfHits objects support the same set of
accessors as Hits objects plus the nnode() accessor that is equivalent to nLnode() and nRnode().

We also provide two little utilities to operate on a SelfHits object x:
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isSelfHit(x): A self hit is an edge from a node to itself. isSelfHit(x) returns a logical vector
parallel to x indicating which elements in x are self hits.

isRedundantHit(x): When there is more than 1 edge between 2 given nodes (regardless of ori-
entation), the extra edges are considered to be redundant hits. isRedundantHit(x) returns a
logical vector parallel to x indicating which elements in x are redundant hits.

Author(s)

Michael Lawrence and Hervé Pagès

See Also

• Hits-comparison for comparing and ordering hits.

• The findOverlaps function in the IRanges package which returns SortedByQueryHits ob-
ject.

• Hits-examples in the IRanges package, for some examples of Hits object basic manipulation.

• setops-methods in the IRanges package, for set operations on Hits objects.

Examples

from <- c(5, 2, 3, 3, 3, 2)
to <- c(11, 15, 5, 4, 5, 11)
id <- letters[1:6]

Hits(from, to, 7, 15, id)
Hits(from, to, 7, 15, id, sort.by.query=TRUE)

## ---------------------------------------------------------------------
## selectHits()
## ---------------------------------------------------------------------

x <- c("a", "b", "a", "c", "d")
table <- c("a", "e", "d", "a", "a", "d")
hits <- findMatches(x, table) # sorts the hits by query
hits

selectHits(hits, select="all") # no-op

selectHits(hits, select="first")
selectHits(hits, select="first", nodup=TRUE)

selectHits(hits, select="last")
selectHits(hits, select="last", nodup=TRUE)

selectHits(hits, select="arbitrary")
selectHits(hits, select="count")

## ---------------------------------------------------------------------
## remapHits()
## ---------------------------------------------------------------------
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Lnodes.remapping <- factor(c(a="A", b="B", c="C", d="D")[x],
levels=LETTERS[1:4])

remapHits(hits, Lnodes.remapping=Lnodes.remapping)

## See ?`Hits-examples` in the IRanges package for more examples of basic
## manipulation of Hits objects.

## ---------------------------------------------------------------------
## SelfHits objects
## ---------------------------------------------------------------------

hits2 <- SelfHits(c(2, 3, 3, 3, 3, 3, 4, 4, 4), c(4, 3, 2:4, 2, 2:3, 2), 4)
## Hits 2 and 4 are self hits (from 3rd node to itself):
which(isSelfHit(hits2))
## Hits 4, 6, 7, 8, and 9, are redundant hits:
which(isRedundantHit(hits2))

hits3 <- findMatches(x)
hits3[!isSelfHit(hits3)]
hits3[!(isSelfHit(hits3) | isRedundantHit(hits3))]

Hits-comparison Comparing and ordering hits

Description

==, !=, <=, >=, <, >, match(), %in%, order(), sort(), and rank() can be used on Hits objects to
compare and order hits.

Note that only the "pcompare", "match", and "order" methods are actually defined for Hits ob-
jects. This is all what is needed to make all the other comparing and ordering operations (i.e. ==,
!=, <=, >=, <, >, %in%, sort(), and rank()) work on these objects (see ?`Vector-comparison`
for more information about this).

Usage

## S4 method for signature 'Hits,Hits'
pcompare(x, y)

## S4 method for signature 'Hits,Hits'
match(x, table, nomatch=NA_integer_, incomparables=NULL,

method=c("auto", "quick", "hash"))

## S4 method for signature 'Hits'
order(..., na.last=TRUE, decreasing=FALSE, method=c("auto", "shell", "radix"))

Arguments

x, y, table Compatible Hits objects, that is, Hits objects with the same subject and query
lengths.
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nomatch The value to be returned in the case when no match is found. It is coerced to an
integer.

incomparables Not supported.

method For match: Use a Quicksort-based (method="quick") or a hash-based (method="hash")
algorithm. The latter tends to give better performance, except maybe for some
pathological input that we’ve not encountered so far. When method="auto"
is specified, the most efficient algorithm will be used, that is, the hash-based
algorithm if length(x) <= 2^29, otherwise the Quicksort-based algorithm.
For order: The method argument is ignored.

... One or more Hits objects. The additional Hits objects are used to break ties.

na.last Ignored.

decreasing TRUE or FALSE.

Details

Only hits that belong to Hits objects with same subject and query lengths can be compared.

Hits are ordered by query hit first, and then by subject hit. On a Hits object, order, sort, and rank
are consistent with this order.

pcompare(x, y): Performs element-wise (aka "parallel") comparison of 2 Hits objects x and y,
that is, returns an integer vector where the i-th element is less than, equal to, or greater than
zero if x[i] is considered to be respectively less than, equal to, or greater than y[i]. See
?`Vector-comparison` for how x or y is recycled when the 2 objects don’t have the same
length.

match(x, table, nomatch=NA_integer_, method=c("auto", "quick", "hash")): Returns an
integer vector of the length of x, containing the index of the first matching hit in table (or
nomatch if there is no matching hit) for each hit in x.

order(...): Returns a permutation which rearranges its first argument (a Hits object) into ascend-
ing order, breaking ties by further arguments (also Hits objects).

Author(s)

Hervé Pagès

See Also

• Hits objects.

• Vector-comparison for general information about comparing, ordering, and tabulating vector-
like objects.

Examples

## ---------------------------------------------------------------------
## A. ELEMENT-WISE (AKA "PARALLEL") COMPARISON OF 2 Hits OBJECTS
## ---------------------------------------------------------------------
hits <- Hits(c(2, 4, 4, 4, 5, 5), c(3, 1, 3, 2, 3, 2), 6, 3)
hits
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pcompare(hits, hits[3])
pcompare(hits[3], hits)

hits == hits[3]
hits != hits[3]
hits >= hits[3]
hits < hits[3]

## ---------------------------------------------------------------------
## B. match(), %in%
## ---------------------------------------------------------------------
table <- hits[-c(1, 3)]
match(hits, table)

hits %in% table

## ---------------------------------------------------------------------
## C. order(), sort(), rank()
## ---------------------------------------------------------------------
order(hits)
sort(hits)
rank(hits)

Hits-setops Set operations on Hits objects

Description

Perform set operations on Hits objects.

Details

union(x, y), intersect(x, y), setdiff(x, y), and setequal(x, y) work on Hits objects x and
y only if the objects are compatible Hits objects, that is, if they have the same subject and query
lengths. These operations return respectively the union, intersection, (asymmetric!) difference, and
equality of the sets of hits in x and y.

Value

union returns a Hits object obtained by appending to x the hits in y that are not already in x.

intersect returns a Hits object obtained by keeping only the hits in x that are also in y.

setdiff returns a Hits object obtained by dropping from x the hits that are in y.

setequal returns TRUE if x and y contain the same sets of hits and FALSE otherwise.

union, intersect, and setdiff propagate the names and metadata columns of their first argument
(x).
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Author(s)

Hervé Pagès and Michael Lawrence

See Also

• Hits objects.

• Hits-comparison for comparing and ordering hits.

• BiocGenerics::union, BiocGenerics::intersect, and BiocGenerics::setdiff in the
BiocGenerics package for general information about these generic functions.

Examples

x <- Hits(c(2, 4, 4, 4, 5, 5), c(3, 1, 3, 2, 3, 2), 6, 3,
score=11:16)

x

y <- Hits(c(1, 3, 4, 4, 5, 5, 5), c(3, 3, 2, 1, 2, 1, 3), 6, 3,
score=21:27)

y

union(x, y)
union(y, x) # same hits as in union(x, y), but in different order

intersect(x, y)
intersect(y, x) # same hits as in intersect(x, y), but in

# different order

setdiff(x, y)
setdiff(y, x)

setequal(x, y)

HitsList-class List of Hits objects

Description

The HitsList class stores a set of Hits objects. It’s typically used to represent the result of findOverlaps
on two IntegerRangesList objects.

Details

Roughly the same set of utilities are provided for HitsList as for Hits:

The as.matrix method coerces a HitsList object in a similar way to Hits, except a column is
prepended that indicates which space (or element in the query IntegerRangesList) to which the row
corresponds.
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The as.table method flattens or unlists the list, counts the number of hits for each query range and
outputs the counts as a table, which has the same shape as from a single Hits object.

To transpose a HitsList object x, so that the subject and query in each space are interchanged,
call t(x). This allows, for example, counting the number of hits for each subject element using
as.table.

Accessors

queryHits(x): Equivalent to unname(as.matrix(x)[,1]).

subjectHits(x): Equivalent to unname(as.matrix(x)[,2]).

space(x): gets the character vector naming the space in the query IntegerRangesList for each hit,
or NULL if the query did not have any names.

Coercion

In the code snippets below, x is a HitsList object.

as.matrix(x): calls as.matrix on each Hits, combines them row-wise and offsets the indices so
that they are aligned with the result of calling unlist on the query and subject.

as.table(x): counts the number of hits for each query element in x and outputs the counts as a
table, which is aligned with the result of calling unlist on the query.

t(x): Interchange the query and subject in each space of x, returns a transposed HitsList object.

Note

This class is highly experimental. It has not been well tested and may disappear at any time.

Author(s)

Michael Lawrence

See Also

• findOverlaps in the IRanges package, which returns a HitsList object when the query and
subject are IntegerRangesList objects.

Examples

hits <- Hits(rep(1:20, each=5), 100:1, 20, 100)
hlist <- splitAsList(hits, 1:5)
hlist
hlist[[1]]
hlist[[2]]

## Some sanity checks:

hits1 <- Hits(c(4, 4, 15, 15), c(1, 2, 3, 4), 20, 4)
hits2 <- Hits(c(4, 4, 15, 15), c(1, 2, 3, 4), 20, 4, sort.by.query=TRUE)
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fA <- c(1, 1, 2, 2)
hlist1A <- split(hits1, fA)
hlist2A <- split(hits2, fA)
stopifnot(identical(as(hlist1A, "SortedByQueryHitsList"), hlist2A))
stopifnot(identical(hlist1A, as(hlist2A, "HitsList")))

fB <- c(1, 2, 1, 2)
hlist1B <- split(hits1, fB)
hlist2B <- split(hits2, fB)
stopifnot(identical(as(hlist1B, "SortedByQueryHitsList"), hlist2B))
stopifnot(identical(hlist1B, as(hlist2B, "HitsList")))

integer-utils Some utility functions to operate on integer vectors

Description

Some low-level utility functions to operate on ordinary integer vectors.

Usage

isSequence(x, of.length=length(x))

toListOfIntegerVectors(x, sep=",")

## more to come...

Arguments

x For isSequence(): An integer vector.
For toListOfIntegerVectors(): A character vector where each element is a
string containing comma-separated integers in decimal representation. Alter-
natively x can be a list of raw vectors, in which case it’s treated like if it was
sapply(x, rawToChar).

of.length The expected length of the integer sequence.

sep The separator represented as a single-letter string.

Details

isSequence() returns TRUE or FALSE depending on whether x is identical to seq_len(of.length)
or not.

toListOfIntegerVectors() is a fast and memory-efficient implementation of

lapply(strsplit(x, sep, fixed=TRUE), as.integer)

but, unlike the above code, it will raise an error if the input contains NAs or strings that don’t
represent integer values.
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Value

A list parallel to x where each list element is an integer vector.

Author(s)

Hervé Pagès

See Also

• The seq_len function in the base package.

• The strsplit function in the base package.

Examples

## ---------------------------------------------------------------------
## isSequence()
## ---------------------------------------------------------------------
isSequence(1:5) # TRUE
isSequence(5:1) # FALSE
isSequence(0:5) # FALSE
isSequence(integer(0)) # TRUE
isSequence(1:5, of.length=5) # TRUE (the expected length)
isSequence(1:5, of.length=6) # FALSE (not the expected length)

## ---------------------------------------------------------------------
## toListOfIntegerVectors()
## ---------------------------------------------------------------------

x <- c("1116,0,-19",
" +55291 , 2476,",
"19184,4269,5659,6470,6721,7469,14601",
"7778889, 426900, -4833,5659,6470,6721,7096",
"19184 , -99999")

y <- toListOfIntegerVectors(x)
y

## When it doesn't choke on an NA or string that doesn't represent
## an integer value, toListOfIntegerVectors() is equivalent to
## the function below but is faster and more memory-efficient:
toListOfIntegerVectors2 <- function(x, sep=",")
{

lapply(strsplit(x, sep, fixed=TRUE), as.integer)
}
y2 <- toListOfIntegerVectors2(x)
stopifnot(identical(y, y2))
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isSorted Test if a vector-like object is sorted

Description

isSorted and isStrictlySorted test if a vector-like object is sorted or strictly sorted, respectively.

isConstant tests if a vector-like or array-like object is constant. Currently only isConstant meth-
ods for vectors or arrays of type integer or double are implemented.

Usage

isSorted(x)
isStrictlySorted(x)
isConstant(x)

Arguments

x A vector-like object. Can also be an array-like object for isConstant.

Details

Vector-like objects of length 0 or 1 are always considered to be sorted, strictly sorted, and constant.

Strictly sorted and constant objects are particular cases of sorted objects.

isStrictlySorted(x) is equivalent to isSorted(x) && !anyDuplicated(x)

Value

A single logical i.e. TRUE, FALSE or NA.

Author(s)

Hervé Pagès

See Also

• is.unsorted.

• duplicated and unique.

• all.equal.

• NA and is.finite.
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Examples

## ---------------------------------------------------------------------
## A. isSorted() and isStrictlySorted()
## ---------------------------------------------------------------------

x <- 1:10

isSorted(x) # TRUE
isSorted(-x) # FALSE
isSorted(rev(x)) # FALSE
isSorted(-rev(x)) # TRUE

isStrictlySorted(x) # TRUE

x2 <- rep(x, each=2)
isSorted(x2) # TRUE
isStrictlySorted(x2) # FALSE

## ---------------------------------------------------------------------
## B. "isConstant" METHOD FOR integer VECTORS
## ---------------------------------------------------------------------

## On a vector with no NAs:
stopifnot(isConstant(rep(-29L, 10000)))

## On a vector with NAs:
stopifnot(!isConstant(c(0L, NA, -29L)))
stopifnot(is.na(isConstant(c(-29L, -29L, NA))))

## On a vector of length <= 1:
stopifnot(isConstant(NA_integer_))

## ---------------------------------------------------------------------
## C. "isConstant" METHOD FOR numeric VECTORS
## ---------------------------------------------------------------------
## This method does its best to handle rounding errors and special
## values NA, NaN, Inf and -Inf in a way that "makes sense".
## Below we only illustrate handling of rounding errors.

## Here values in 'x' are "conceptually" the same:
x <- c(11/3,

2/3 + 4/3 + 5/3,
50 + 11/3 - 50,
7.00001 - 1000003/300000)

## However, due to machine rounding errors, they are not *strictly*
## equal:
duplicated(x)
unique(x)
## only *nearly* equal:
all.equal(x, rep(11/3, 4)) # TRUE
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## 'isConstant(x)' uses 'all.equal()' internally to decide whether
## the values in 'x' are all the same or not:
stopifnot(isConstant(x))

## This is not perfect though:
isConstant((x - 11/3) * 1e8) # FALSE on Intel Pentium paltforms

# (but this is highly machine dependent!)

List-class List objects

Description

List objects are Vector objects with a "[[", elementType and elementNROWS method. The List
class serves a similar role as list in base R.

It adds one slot, the elementType slot, to the two slots shared by all Vector objects.

The elementType slot is the preferred location for List subclasses to store the type of data repre-
sented in the sequence. It is designed to take a character of length 1 representing the class of the
sequence elements. While the List class performs no validity checking based on elementType, if
a subclass expects elements to be of a given type, that subclass is expected to perform the neces-
sary validity checking. For example, the subclass IntegerList (defined in the IRanges package) has
elementType = "integer" and its validity method checks if this condition is TRUE.

To be functional, a class that inherits from List must define at least a "[[" method (in addition to
the minimum set of Vector methods).

Construction

List objects and derivatives are typically constructed using one of the following methods:

Use of a constructor function: Many constructor functions are provided in S4Vectors and other
Bioconductor packages for List objects and derivatives e.g. List(), IntegerList(), RleList(),
IntegerRangesList(), GRangesList(), etc...
Which one to use depends on the particular type of List derivative one wishes to construct e.g. use
IntegerList() to get an IntegerList object, RleList() to get an RleList object, etc...
Note that the name of a constructor function is always the name of a valid class. See the man page
of a particular constructor function for the details.

Coercion to List or to a List subclass: Many coercion methods are defined in S4Vectors and
other Bioconductor packages to turn all kinds of objects into List objects.
One general and convenient way to convert any vector-like object x into a List is to call as(x,
"List"). This will yield an object from a subclass of List. Note that this subclass will typically
extend CompressedList but not necessarily (see ?CompressedList in the IRanges package for
more information about CompressedList objects).
However, if a specific type of List derivative is desired (e.g. CompressedGRangesList), then
coercing explicitly to that class is preferrable as it is more robust and more readable.
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Use of splitAsList(), relist(), or extractList(): splitAsList() behaves like base::split()
except that it returns a List derivative instead of an ordinary list. See ?splitAsList for more in-
formation.
The relist() methods for List objects and derivatives, as well as the extractList() function,
are defined in the IRanges package. They provide very efficient ways to construct a List deriva-
tive from the vector-like object passed to their first argument (flesh for relist() and x for
extractList()). See ?extractList in the IRanges package for more information.

Accessors

In the following code snippets, x is a List object.

length(x): Get the number of list elements in x.

names(x), names(x) <- value: Get or set the names of the elements in the List.

mcols(x, use.names=FALSE), mcols(x) <- value: Get or set the metadata columns. See Vector
man page for more information.

elementType(x): Get the scalar string naming the class from which all elements must derive.

elementNROWS(x): Get the length (or nb of row for a matrix-like object) of each of the elements.
Equivalent to sapply(x, NROW).

isEmpty(x): Returns a logical indicating either if the sequence has no elements or if all its ele-
ments are empty.

Coercion

To List.

as(x, "List"): Converts a vector-like object into a List, usually a CompressedList derivative.
One notable exception is when x is an ordinary list, in which case as(x, "List") returns a
SimpleList derivative.
To explicitly request a SimpleList derivative, call as(x, "SimpleList").
See ?CompressedList (you might need to load the IRanges package first) and ?SimpleList
for more information about the CompressedList and SimpleList representations.

From List. In the code snippets below, x is a List object.

as.list(x, ...), as(from, "list"): Turns x into an ordinary list.

unlist(x, recursive=TRUE, use.names=TRUE): Concatenates the elements of x into a single
vector-like object (of class elementType(x)).

as.data.frame(x, row.names=NULL, optional=FALSE , value.name="value", use.outer.mcols=FALSE, group_name.as.factor=FALSE, ...):
Coerces a List to a data.frame. The result has the same length as unlisted x with two addi-
tional columns, group and group_name. group is an integer that indicates which list element
the record came from. group_name holds the list name associated with each record; value is
character by default and factor when group_name.as.factor is TRUE.
When use.outer.mcols is TRUE the metadata columns on the outer list elements of x are
replicated out and included in the data.frame. List objects that unlist to a single vector
(column) are given the column name ‘value‘ by default. A custom name can be provided in
value.name.
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Splitting values in the resulting data.frame by the original groups in x should be done using
the group column as the f argument to splitAsList. To relist data, use x as the skeleton
argument to relist.

Subsetting

In the code snippets below, x is a List object.

x[i]: Return a new List object made of the list elements selected by subscript i. Subscript i
can be of any type supported by subsetting of a Vector object (see Vector man page for the
details), plus the following types: IntegerList, LogicalList, CharacterList, integer-RleList,
logical-RleList, character-RleList, and IntegerRangesList. Those additional types perform
subsetting within the list elements rather than across them.

x[i] <- value: Replacement version of x[i].

x[[i]]: Return the selected list element i, where i is an numeric or character vector of length 1.

x[[i]] <- value: Replacement version of x[[i]].

x$name, x$name <- value: Similar to x[[name]] and x[[name]] <- value, but name is taken lit-
erally as an element name.

Author(s)

P. Aboyoun and H. Pagès

See Also

• splitAsList for splitting a vector-like object into a List object.

• relist and extractList in the IRanges package for efficiently constructing a List derivative from
a vector-like object.

• List-utils for common operations on List objects.

• Vector objects for the parent class.

• The SimpleList class for a direct extension of the List class.

• The CompressedList class defined in the IRanges package for another direct extension of the
List class.

• The IntegerList, RleList, and IRanges classes and constructors defined in the IRanges package
for some examples of List derivatives.

Examples

showClass("List") # shows only the known subclasses define in this package

## ---------------------------------------------------------------------
## A. CONSTRUCTION
## ---------------------------------------------------------------------
x <- sample(500, 20)
y0 <- splitAsList(x, x %% 4)
y0
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levels <- paste0("G", 1:10)
f1 <- factor(sample(levels, length(x), replace=TRUE), levels=levels)
y1 <- splitAsList(x, f1)
y1

f2 <- factor(sample(levels, 26, replace=TRUE), levels=levels)
y2 <- splitAsList(letters, f2)
y2

library(IRanges) # for the NumericList() constructor and the
# coercion to CompressedCharacterList

NumericList(A=runif(10), B=NULL, C=runif(3))

## Another way to obtain 'splitAsList(letters, f2)' but using
## 'splitAsList()' should be preferred as it is a lot more efficient:
y2b <- as(split(letters, f2), "CompressedCharacterList") # inefficient!
stopifnot(identical(y2, y2b))

## ---------------------------------------------------------------------
## B. SUBSETTING
## ---------------------------------------------------------------------
## Single-bracket and double-bracket subsetting behave like on ordinary
## lists:
y1[c(10, 1, 2, 2)]
y1[c(-10, -1, -2)]
y1[c(TRUE, FALSE)]
y1[c("G8", "G1")]
head(y1)
tail(y1, n=3)
y1[[2]] # note the difference with y1[2]
y1[["G2"]] # note the difference with y1["G2"]

y0[["3"]]
y0[[3]]

## In addition to all the forms of subscripting supported by ordinary
## lists, List objects and derivatives accept a subscript that is a
## list-like object. This form of subsetting is called "list-style
## subsetting":
i <- list(4:3, -2, 1) # ordinary list
y1[i]
i <- y1 >= 200 # LogicalList object
y1[i]

## List-style subsetting also works with an RleList or IntegerRangesList
## subscript:
i <- RleList(y1 >= 200) # RleList object
y1[i]
i <- IRangesList(RleList(y1 >= 200)) # IRangesList object
y1[i]

## ---------------------------------------------------------------------
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## C. THE "UNLIST -> TRANFORM -> RELIST" IDIOM
## ---------------------------------------------------------------------
## The "unlist -> transform -> relist" idiom is a very efficient way to
## apply the same simple transformation to all the **inner elements** of
## a list-like object (i.e. to all the elements of its list elements).
## The result is another list-like object with the same shape as the
## original object (but not necessarily the same class):
relist(sqrt(unlist(y1)), y1)
relist(toupper(unlist(y2)), y2)

## However note that sqrt(), toupper(), and many other base functions,
## can be used directly on a List derivative. This is because the IRanges
## package defines methods for these functions that know how to handle
## List objects:
sqrt(y1) # same as 'relist(sqrt(unlist(y1)), y1)'
toupper(y2) # same as 'relist(toupper(unlist(y2)), y2)'

List-utils Common operations on List objects

Description

Various functions and methods for looping on List objects, functional programming on List objects,
and evaluation of an expression in a List object.

Usage

## Looping on List objects:
## ------------------------

## S4 method for signature 'List'
lapply(X, FUN, ...)

## S4 method for signature 'List'
sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE)

endoapply(X, FUN, ...)

revElements(x, i)

mendoapply(FUN, ..., MoreArgs=NULL)

pc(...)

## Functional programming methods for List objects:
## ------------------------------------------------

## S4 method for signature 'List'
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Reduce(f, x, init, right=FALSE, accumulate=FALSE)
## S4 method for signature 'List'
Filter(f, x)
## S4 method for signature 'List'
Find(f, x, right=FALSE, nomatch=NULL)
## S4 method for signature 'List'
Map(f, ...)
## S4 method for signature 'List'
Position(f, x, right=FALSE, nomatch=NA_integer_)

## Evaluation of an expression in a List object:
## ---------------------------------------------

## S4 method for signature 'List'
within(data, expr, ...)

## Constructing list matrices:
## ---------------------------------------------

## S4 method for signature 'List'
rbind(..., deparse.level=1L)
## S4 method for signature 'List'
cbind(..., deparse.level=1L)

Arguments

X, x A list, data.frame or List object.

FUN The function to be applied to each element of X (for endoapply) or for the
elements in ... (for mendoapply).

... For lapply, sapply, and endoapply, optional arguments to FUN.
For mendoapply, pc and Map, one or more list-like objects.

simplify, USE.NAMES
See ?base::sapply for a description of these arguments.

MoreArgs A list of other arguments to FUN.

i Index specifying the elements to replace. Can be anything supported by `[<-`.
f, init, right, accumulate, nomatch

See ?base::Reduce for a description of these arguments.

data A List object.

expr Expression to evaluate.

deparse.level See ?base::rbind for a description of this argument.

Details

Looping on List objects: Like the standard lapply function defined in the base package, the
lapply method for List objects returns a list of the same length as X, with each element being the
result of applying FUN to the corresponding element of X.
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Like the standard sapply function defined in the base package, the sapply method for List objects
is a user-friendly version of lapply by default returning a vector or matrix if appropriate.
endoapply and mendoapply perform the endomorphic equivalents of lapply and mapply by
returning objects of the same class as the inputs rather than an ordinary list.
revElements(x, i) reverses the list elements in x specified by i. It’s equivalent to, but faster
than, doing x[i] <- endoapply(x[i], rev).
pc(...) combine list-like objects by concatenating them in an element-wise fashion. It’s similar
to, but faster than, mapply(c, ..., SIMPLIFY=FALSE). With the following differences:

1. pc() ignores the supplied objects that are NULL.
2. pc() does not recycle its arguments. All the supplied objects must have the same length.
3. If one of the supplied objects is a List object, then pc() returns a List object.
4. pc() always returns a homogenous list or List object, that is, an object where all the list

elements have the same type.

Functional programming methods for List objects: The R base package defines some higher-
order functions that are commonly found in Functional Programming Languages. See ?base::Reduce
for the details, and, in particular, for a description of their arguments. The S4Vectors package pro-
vides methods for List objects, so, in addition to be an ordinary vector or list, the x argument can
also be a List object.

Evaluation of an expression in a List object: within evaluates expr within as.env(data) via
eval(data). Similar to with, except assignments made during evaluation are taken as assign-
ments into data, i.e., new symbols have their value appended to data, and assigning new values
to existing symbols results in replacement.

Binding Lists into a matrix: There are methods for cbind and rbind that will bind multiple
lists together into a basic list matrix. The usual geometric constraints apply. In the future, this
might return a List (+ dimensions), but for now the return value is an ordinary list.

Value

endoapply returns an object of the same class as X, each element of which is the result of applying
FUN to the corresponding element of X.

mendoapply returns an object of the same class as the first object specified in ..., each element of
which is the result of applying FUN to the corresponding elements of ....

pc returns a list or List object of the same length as the input objects.

See ?base::Reduce for the value returned by the functional programming methods.

See ?base::within for the value returned by within.

cbind and rbind return a list matrix.

Author(s)

P. Aboyoun and H. Pagès
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See Also

• The List class.

• base::lapply and base::mapply for the default lapply and mapply methods.

• base::Reduce for the default functional programming methods.

• base::within for the default within method.

• base::cbind and base::rbind for the default matrix binding methods.

Examples

a <- data.frame(x = 1:10, y = rnorm(10))
b <- data.frame(x = 1:10, y = rnorm(10))

endoapply(a, function(x) (x - mean(x))/sd(x))
mendoapply(function(e1, e2) (e1 - mean(e1)) * (e2 - mean(e2)), a, b)

x <- list(a=11:13, b=26:21, c=letters)
y <- list(-(5:1), c("foo", "bar"), 0.25)
pc(x, y)

library(IRanges)
x <- IntegerList(a=11:13, b=26:21, c=31:36, d=4:2)
y <- NumericList(-(5:1), 1:2, numeric(0), 0.25)
pc(x, y)

Reduce("+", x)

Filter(is.unsorted, x)

pos1 <- Position(is.unsorted, x)
stopifnot(identical(Find(is.unsorted, x), x[[pos1]]))

pos2 <- Position(is.unsorted, x, right=TRUE)
stopifnot(identical(Find(is.unsorted, x, right=TRUE), x[[pos2]]))

y <- x * 1000L
Map("c", x, y)

rbind(x, y)
cbind(x, y)

LLint-class LLint vectors

Description

The LLint class is a container for storing a vector of large integers (i.e. long long int values at the
C level).
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Usage

LLint(length=0L)
as.LLint(x)
is.LLint(x)

Arguments

length A non-negative number (i.e. integer, double, or LLint value) specifying the
desired length.

x Object to be coerced or tested.

Details

LLint vectors aim to provide the same functionality as integer vectors in base R but their values
are stored as long long int values at the C level vs int values for integer vectors. Note that on Intel
platforms long long int values are 64-bit and int values 32-bit only. Therefore LLint vectors can
hold values in the +/-9.223e18 range (approximately) vs +/-2.147e9 only for integer vectors.

NAs are supported and the NA_LLint_ constant is predefined for convenience as as(NA, "LLint").

Names are not supported for now.

Coercions from/to logical, integer, double, and character are supported.

Operations from the Arith, Compare and Summary groups are supported.

More operations coming soon...

Author(s)

Hervé Pagès

See Also

• integer vectors in base R.

• The Arith, Compare and Summary group generics in the methods package.

Examples

## A long long int uses 8 bytes (i.e. 64 bits) in C:
.Machine$sizeof.longlong

## ---------------------------------------------------------------------
## SIMPLE EXAMPLES
## ---------------------------------------------------------------------

LLint()
LLint(10)

as.LLint(3e9)
as.LLint("3000000000")

x <- as.LLint(1:10 * 111111111)
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x * x
5 * x # result as vector of doubles (i.e. 'x' coerced to double)
5L * x # result as LLint vector (i.e. 5L coerced to LLint vector)
max(x)
min(x)
range(x)
sum(x)

x <- as.LLint(1:20)
prod(x)
x <- as.LLint(1:21)
prod(x) # result is out of LLint range (+/-9.223e18)
prod(as.numeric(x))

x <- as.LLint(1:75000)
sum(x * x * x) == sum(x) * sum(x)

## Note that max(), min() and range() *always* return an LLint vector
## when called on an LLint vector, even when the vector is empty:
max(LLint()) # NA with no warning
min(LLint()) # NA with no warning

## This differs from how max(), min() and range() behave on an empty
## integer vector:
max(integer()) # -Inf with a warning
min(integer()) # Inf with a warning

## ---------------------------------------------------------------------
## GOING FROM STRINGS TO INTEGERS
## ---------------------------------------------------------------------

## as.integer() behaves like as.integer(as.double()) on a character
## vector. With the following consequence:
s <- "-2.9999999999999999"
as.integer(s) # -3

## as.LLint() converts the string *directly* to LLint, without
## coercing to double first:
as.LLint(s) # decimal part ignored

## ---------------------------------------------------------------------
## GOING FROM DOUBLE-PRECISION VALUES TO INTEGERS AND VICE-VERSA
## ---------------------------------------------------------------------

## Be aware that a double-precision value is not guaranteed to represent
## exactly an integer > 2^53. This can cause some surprises:
2^53 == 2^53 + 1 # TRUE, yep!

## And therefore:
as.LLint(2^53) == as.LLint(2^53 + 1) # also TRUE

## This can be even more disturbing when passing a big literal integer
## value because the R parser will turn it into a double-precision value
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## before passing it to as.LLint():
x1 <- as.LLint(9007199254740992) # same as as.LLint(2^53)
x1
x2 <- as.LLint(9007199254740993) # same as as.LLint(2^53 + 1)
x2
x1 == x2 # still TRUE

## However, no precision is lost if a string literal is used instead:
x1 <- as.LLint("9007199254740992")
x1
x2 <- as.LLint("9007199254740993")
x2
x1 == x2 # FALSE
x2 - x1

d1 <- as.double(x1)
d2 <- as.double(x2) # warning!
d1 == d2 # TRUE

## ---------------------------------------------------------------------
## LLint IS IMPLEMENTED AS AN S4 CLASS
## ---------------------------------------------------------------------

class(LLint(10))
typeof(LLint(10)) # S4
storage.mode(LLint(10)) # S4
is.vector(LLint(10)) # FALSE
is.atomic(LLint(10)) # FALSE

## This means that an LLint vector cannot go in an ordinary data
## frame:
## Not run:
data.frame(id=as.LLint(1:5)) # error!

## End(Not run)
## A DataFrame needs to be used instead:
DataFrame(id=as.LLint(1:5))

## ---------------------------------------------------------------------
## SANITY CHECKS
## ---------------------------------------------------------------------

x <- as.integer(c(0, 1, -1, -3, NA, -99))
y <- as.integer(c(-6, NA, -4:3, 0, 1999, 6:10, NA))
xx <- as.LLint(x)
yy <- as.LLint(y)

## Operations from "Arith" group:
stopifnot(identical(x + y, as.integer(xx + yy)))
stopifnot(identical(as.LLint(y + x), yy + xx))
stopifnot(identical(x - y, as.integer(xx - yy)))
stopifnot(identical(as.LLint(y - x), yy - xx))
stopifnot(identical(x * y, as.integer(xx * yy)))
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stopifnot(identical(as.LLint(y * x), yy * xx))
stopifnot(identical(x / y, xx / yy))
stopifnot(identical(y / x, yy / xx))
stopifnot(identical(x %/% y, as.integer(xx %/% yy)))
stopifnot(identical(as.LLint(y %/% x), yy %/% xx))
stopifnot(identical(x %% y, as.integer(xx %% yy)))
stopifnot(identical(as.LLint(y %% x), yy %% xx))
stopifnot(identical(x ^ y, xx ^ yy))
stopifnot(identical(y ^ x, yy ^ xx))

## Operations from "Compare" group:
stopifnot(identical(x == y, xx == yy))
stopifnot(identical(y == x, yy == xx))
stopifnot(identical(x != y, xx != yy))
stopifnot(identical(y != x, yy != xx))
stopifnot(identical(x <= y, xx <= yy))
stopifnot(identical(y <= x, yy <= xx))
stopifnot(identical(x >= y, xx >= yy))
stopifnot(identical(y >= x, yy >= xx))
stopifnot(identical(x < y, xx < yy))
stopifnot(identical(y < x, yy < xx))
stopifnot(identical(x > y, xx > yy))
stopifnot(identical(y > x, yy > xx))

## Operations from "Summary" group:
stopifnot(identical(max(y), as.integer(max(yy))))
stopifnot(identical(max(y, na.rm=TRUE), as.integer(max(yy, na.rm=TRUE))))
stopifnot(identical(min(y), as.integer(min(yy))))
stopifnot(identical(min(y, na.rm=TRUE), as.integer(min(yy, na.rm=TRUE))))
stopifnot(identical(range(y), as.integer(range(yy))))
stopifnot(identical(range(y, na.rm=TRUE), as.integer(range(yy, na.rm=TRUE))))
stopifnot(identical(sum(y), as.integer(sum(yy))))
stopifnot(identical(sum(y, na.rm=TRUE), as.integer(sum(yy, na.rm=TRUE))))
stopifnot(identical(prod(y), as.double(prod(yy))))
stopifnot(identical(prod(y, na.rm=TRUE), as.double(prod(yy, na.rm=TRUE))))

Pairs-class Pairs objects

Description

Pairs is a Vector that stores two parallel vectors (any object that can be a column in a DataFrame).
It provides conveniences for performing binary operations on the vectors, as well as for converting
between an equivalent list representation. Virtually all of the typical R vector operations should
behave as expected.

A typical use case is representing the pairing from a findOverlaps call, for which findOverlapPairs
is a shortcut.
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Constructor

Pairs(first, second, ..., names = NULL, hits = NULL): Constructs a Pairs object by aligning
the vectors first and second. The vectors must have the same length, unless hits is spec-
ified. Arguments in ... are combined as columns in the mcols of the result. The names
argument specifies the names on the result. If hits is not NULL, it should be a Hits object that
collates the elements in first and second to produce the corresponding pairs.

Accessors

In the code snippets below, x is a Pairs object.

names(x), names(x) <- value: get or set the names

first(x), first(x) <- value: get or set the first member of each pair

second(x), second(x) <- value: get or set the second member of each pair

Coercion

zipup(x): Interleaves the Pairs object x into a list, where each element is composed of a pair.
The type of list depends on the type of the elements.

zipdown(x): The inverse of zipup(). Converts x, a list where every element is of length 2, to a
Pairs object, by assuming that each element of the list represents a pair.

Subsetting

In the code snippets below, x is a Pairs object.

x[i]: Subset the Pairs object.

Author(s)

Michael Lawrence

See Also

• Hits-class, a typical way to define a pairing.

• findOverlapPairs in the IRanges package, which generates an instance of this class based
on overlaps.

• setops-methods in the IRanges package, for set operations on Pairs objects.

Examples

p <- Pairs(1:10, Rle(1L, 10), score=rnorm(10), names=letters[1:10])
identical(first(p), 1:10)
mcols(p)$score
p
as.data.frame(p)
z <- zipup(p)
first(p) <- Rle(1:10)
identical(zipdown(z), p)
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RectangularData-class RectangularData objects

Description

RectangularData is a virtual class with no slots to be extended by classes that aim at representing
objects with a 2D rectangular shape.

Some examples of RectangularData extensions are:

• The DataFrame class defined in this package (S4Vectors).

• The DelayedMatrix class defined in the DelayedArray package.

• The SummarizedExperiment and Assays classes defined in the SummarizedExperiment pack-
age.

Details

Any object that belongs to a class that extends RectangularData is called a RectangularData deriva-
tive.

Users should be able to access and manipulate RectangularData derivatives via the standard 2D API
defined in base R, that is, using things like dim(), nrow(), ncol(), dimnames(), the 2D form of [
(x[i, j]), rbind(), cbind(), etc...

Not all RectangularData derivatives will necessarily support the full 2D API but they must support
at least dim(), nrow(x), ncol(x), NROW(x), and NCOL(x). And of course, dim() must return an
integer vector of length 2 on any of these objects.

Developers who implement RectangularData extensions should also make sure that they support
low-level operations bindROWS() and bindCOLS().

Accessors

In the following code snippets, x is a RectangularData derivative. Not all RectangularData deriva-
tives will support all these accessors.

dim(x): Length two integer vector defined as c(nrow(x), ncol(x)). Must work on any Rectan-
gularData derivative.

nrow(x), ncol(x): Get the number of rows and columns, respectively. Must work on any Rectan-
gularData derivative.

NROW(x), NCOL(x): Same as nrow(x) and ncol(x), respectively. Must work on any Rectangular-
Data derivative.

dimnames(x): Length two list of character vectors defined as list(rownames(x), colnames(x)).

rownames(x), colnames(x): Get the names of the rows and columns, respectively.
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Subsetting

In the code snippets below, x is a RectangularData derivative.

x[i, j, drop=TRUE]: Return a new RectangularData derivative of the same class as x made of the
selected rows and columns.
For single row and/or column selection, the drop argument specifies whether or not to "drop
the dimensions" of the result. More precisely, when drop=TRUE (the default), a single row or
column is returned as a vector-like object (of length/NROW equal to ncol(x) if a single row,
or equal to nrow(x) if a single column).
Not all RectangularData derivatives support the drop argument. For example DataFrame and
DelayedMatrix objects support it (only for a single column selection for DataFrame objects),
but SummarizedExperiment objects don’t (drop is ignored for these objects and subsetting
always returns a SummarizedExperiment derivative of the same class as x).

head(x, n=6L): If n is non-negative, returns the first n rows of the RectangularData derivative. If
n is negative, returns all but the last abs(n) rows of the RectangularData derivative.

tail(x, n=6L): If n is non-negative, returns the last n rows of the RectangularData derivative. If
n is negative, returns all but the first abs(n) rows of the RectangularData derivative.

subset(x, subset, select, drop=FALSE): Return a new RectangularData derivative using:

subset logical expression indicating rows to keep, where missing values are taken as FALSE.
select expression indicating columns to keep.
drop passed on to [ indexing operator.

Combining

In the code snippets below, all the input objects are expected to be RectangularData derivatives.

rbind(...): Creates a new RectangularData derivative by aggregating the rows of the input ob-
jects.

cbind(...): Creates a new RectangularData derivative by aggregating the columns of the input
objects.

combineRows(x, ...): Creates a new RectangularData derivative (of the same class as x) by ag-
gregating the rows of the input objects. Unlike rbind(), combineRows() will handle cases
involving differences in the column names of the input objects by adding the missing columns
to them, and filling these columns with NAs. The column names of the returned object are a
union of the column names of the input objects.
Behaves like an endomorphism with respect to its first argument i.e. returns an object of the
same class as x.
Finally note that this is a generic function with methods defined for DataFrame objects and
other RectangularData derivatives.

combineCols(x, ..., use.names=TRUE): Creates a new RectangularData derivative (of the same
class as x) by aggregating the columns of the input objects. Unlike cbind(), combineCols()
will handle cases involving differences in the number of rows of the input objects.
If use.names=TRUE, all objects are expected to have non-NULL, non-duplicated row names.
These row names do not have to be the same, or even shared, across the input objects. Missing
rows in any individual input object are filled with NAs, such that the row names of the returned
object are a union of the row names of the input objects.
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If use.names=FALSE, all objects are expected to have the same number of rows, and this
function behaves the same as cbind(). The row names of the returned object is set to
rownames(x). Differences in the row names between input objects are ignored.
Behaves like an endomorphism with respect to its first argument i.e. returns an object of the
same class as x.
Finally note that this is a generic function with methods defined for DataFrame objects and
other RectangularData derivatives.

combineUniqueCols(x, ..., use.names=TRUE): Same as combineCols(), but this function will
attempt to collapse multiple columns with the same name across the input objects into a single
column in the output. This guarantees that the column names in the output object are always
unique. The only exception is for unnamed columns, which are not collapsed. The function
works on any rectangular objects for which combineCols() works.
When use.names=TRUE, collapsing is only performed if the duplicated column has identical
values for the shared rows in the input objects involved. Otherwise, the contents of the later
input object is simply ignored with a warning. Similarly, if use.names=FALSE, the duplicated
columns must be identical for all rows in the affected input objects.
Behaves like an endomorphism with respect to its first argument i.e. returns an object of the
same class as x.
Finally note that this function is implemented on top of combineCols() and is expected to
work on any RectangularData derivatives for which combineCols() works.

Author(s)

Hervé Pagès and Aaron Lun

See Also

• DataFrame for a RectangularData extension that mimics data.frame objects from base R.

• DataFrame-combine for combineRows(), combineCols(), and combineUniqueCols() ex-
amples involving DataFrame objects.

• data.frame objects in base R.

Examples

showClass("RectangularData") # shows (some of) the known subclasses

Rle-class Rle objects

Description

The Rle class is a general container for storing an atomic vector that is stored in a run-length
encoding format. It is based on the rle function from the base package.
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Constructor

Rle(values, lengths): This constructor creates an Rle instance out of an atomic vector or factor
object values and an integer or numeric vector lengths with all positive elements that rep-
resent how many times each value is repeated. The length of these two vectors must be the
same. lengths can be missing in which case values is turned into an Rle.

Getters

In the code snippets below, x is an Rle object:

runLength(x): Returns the run lengths for x.

runValue(x): Returns the run values for x.

nrun(x): Returns the number of runs in x.

start(x): Returns the starts of the runs for x.

end(x): Returns the ends of the runs for x.

width(x): Same as runLength(x).

Setters

In the code snippets below, x is an Rle object:

runLength(x) <- value: Replaces x with a new Rle object using run values runValue(x) and run
lengths value.

runValue(x) <- value: Replaces x with a new Rle object using run values value and run lengths
runLength(x).

Coercion

From atomic vector to Rle: In the code snippets below, from is an atomic vector:

as(from, "Rle"): This coercion creates an Rle instances out of an atomic vector from.

From Rle to other objects: In the code snippets below, x and from are Rle objects:

as.vector(x, mode="any"), as(from, "vector"): Creates an atomic vector based on the val-
ues contained in x. The vector will be coerced to the requested mode, unless mode is "any",
in which case the most appropriate type is chosen.

as.factor(x), as(from, "factor"): Creates a factor object based on the values contained in
x.

as.data.frame(x), as(from, "data.frame"): Creates a data.frame with a single column hold-
ing the result of as.vector(x).

decode(x): Converts an Rle to its native form, such as an atomic vector or factor. Calling decode
on a non-Rle will return x by default, so it is generally safe for ensuring that an object is
native.
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General Methods

In the code snippets below, x is an Rle object:

x[i, drop=getOption("dropRle", default=FALSE)]: Subsets x by index i, where i can be
positive integers, negative integers, a logical vector of the same length as x, an Rle object
of the same length as x containing logical values, or an IRanges object. When drop=FALSE
returns an Rle object. When drop=TRUE, returns an atomic vector.

x[i] <- value: Replaces elements in x specified by i with corresponding elements in value. Sup-
ports the same types for i as x[i].

x %in% table: Returns a logical Rle representing set membership in table.

c(x, ..., ignore.mcols=FALSE): Concatenate Rle object x and the Rle objects in ... together.
See ?c in this package (the S4Vectors package) for more information about concatenating
Vector derivatives.

append(x, values, after = length(x)): Insert one Rle into another Rle.

values the Rle to insert.
after the subscript in x after which the values are to be inserted.

findRun(x, vec): Returns an integer vector indicating the run indices in Rle vec that are refer-
enced by the indices in the integer vector x.

head(x, n = 6L): If n is non-negative, returns the first n elements of x. If n is negative, returns all
but the last abs(n) elements of x.

is.na(x): Returns a logical Rle indicating which values are NA.

is.finite(x): Returns a logical Rle indicating which values are finite.

is.unsorted(x, na.rm = FALSE, strictly = FALSE): Returns a logical value specifying if x is
unsorted.

na.rm remove missing values from check.
strictly check for _strictly_ increasing values.

length(x): Returns the underlying vector length of x.

match(x, table, nomatch = NA_integer_, incomparables = NULL): Matches the values in x to
table:

table the values to be matched against.
nomatch the value to be returned in the case when no match is found.
incomparables a vector of values that cannot be matched. Any value in x matching a value

in this vector is assigned the nomatch value.

rep(x, times, length.out, each), rep.int(x, times): Repeats the values in x through one of
the following conventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

rev(x): Reverses the order of the values in x.

show(object): Prints out the Rle object in a user-friendly way.
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order(..., na.last=TRUE, decreasing=FALSE, method=c("auto", "shell", "radix")): Returns
a permutation which rearranges its first argument into ascending or descending order, breaking
ties by further arguments. See order.

sort(x, decreasing=FALSE, na.last=NA): Sorts the values in x.

decreasing If TRUE, sort values in decreasing order. If FALSE, sort values in increasing order.
na.last If TRUE, missing values are placed last. If FALSE, they are placed first. If NA, they

are removed.

subset(x, subset): Returns a new Rle object made of the subset using logical vector subset.

table(...): Returns a table containing the counts of the unique values. Supported arguments
include useNA with values of ‘no’ and ‘ifany’. Multiple Rle’s must be concatenated with c()
before calling table.

tabulate(bin, nbins = max(bin, 1L, na.rm = TRUE)): Just like tabulate, except optimized for
Rle.

tail(x, n = 6L): If n is non-negative, returns the last n elements of x. If n is negative, returns all
but the first abs(n) elements of x.

unique(x, incomparables = FALSE, ...): Returns the unique run values. The incomparables
argument takes a vector of values that cannot be compared with FALSE being a special value
that means that all values can be compared.

Set Operations

In the code snippets below, x and y are Rle object or some other vector-like object:

setdiff(x, y): Returns the unique elements in x that are not in y.

union(x, y): Returns the unique elements in either x or y.

intersect(x, y): Returns the unique elements in both x and y.

Author(s)

P. Aboyoun

See Also

Rle-utils, Rle-runstat, and aggregate for more operations on Rle objects.

rle

Vector-class

Examples

x <- Rle(10:1, 1:10)
x

runLength(x)
runValue(x)
nrun(x)

diff(x)
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unique(x)
sort(x)
x[c(1,3,5,7,9)]
x > 4

x2 <- Rle(LETTERS[c(21:26, 25:26)], 8:1)
table(x2)

y <- Rle(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE))
y
as.vector(y)
rep(y, 10)
c(y, x > 5)

Rle-runstat Fixed-width running window summaries

Description

The runsum, runmean, runmed, runwtsum, runq functions calculate the sum, mean, median, weighted
sum, and order statistic for fixed width running windows.

Usage

runsum(x, k, endrule = c("drop", "constant"), ...)

runmean(x, k, endrule = c("drop", "constant"), ...)

## S4 method for signature 'Rle'
smoothEnds(y, k = 3)

## S4 method for signature 'Rle'
runmed(x, k, endrule = c("median", "keep", "drop", "constant"),

algorithm = NULL, print.level = 0)

runwtsum(x, k, wt, endrule = c("drop", "constant"), ...)

runq(x, k, i, endrule = c("drop", "constant"), ...)

Arguments

x, y The data object.

k An integer indicating the fixed width of the running window. Must be odd when
endrule != "drop".

endrule A character string indicating how the values at the beginning and the end (of the
data) should be treated.

"median" see runmed;
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"keep" see runmed;
"drop" do not extend the running statistics to be the same length as the under-

lying vectors;
"constant" copies running statistic to the first values and analogously for the

last ones making the smoothed ends constant.

wt A numeric vector of length k that provides the weights to use.

i An integer in [0, k] indicating which order statistic to calculate.
algorithm, print.level

See ?stats::runmed for a description of these arguments.

... Additional arguments passed to methods. Specifically, na.rm. When na.rm =
TRUE, the NA and NaN values are removed. When na.rm = FALSE, NA is returned
if either NA or NaN are in the specified window.

Details

The runsum, runmean, runmed, runwtsum, and runq functions provide efficient methods for calcu-
lating the specified numeric summary by performing the looping in compiled code.

Value

An object of the same class as x.

Author(s)

P. Aboyoun and V. Obenchain

See Also

runmed, Rle-class, RleList-class

Examples

x <- Rle(1:10, 1:10)
runsum(x, k = 3)
runsum(x, k = 3, endrule = "constant")
runmean(x, k = 3)
runwtsum(x, k = 3, wt = c(0.25, 0.5, 0.25))
runq(x, k = 5, i = 3, endrule = "constant")

## Missing and non-finite values
x <- Rle(c(1, 2, NA, 0, 3, Inf, 4, NaN))
runsum(x, k = 2)
runsum(x, k = 2, na.rm = TRUE)
runmean(x, k = 2, na.rm = TRUE)
runwtsum(x, k = 2, wt = c(0.25, 0.5), na.rm = TRUE)
runq(x, k = 2, i = 2, na.rm = TRUE) ## max value in window

## The .naive_runsum() function demonstrates the semantics of
## runsum(). This test ensures the behavior is consistent with
## base::sum().
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.naive_runsum <- function(x, k, na.rm=FALSE)
sapply(0:(length(x)-k),

function(offset) sum(x[1:k + offset], na.rm=na.rm))

x0 <- c(1, Inf, 3, 4, 5, NA)
x <- Rle(x0)
target1 <- .naive_runsum(x0, 3, na.rm = TRUE)
target2 <- .naive_runsum(x, 3, na.rm = TRUE)
stopifnot(target1 == target2)
current <- as.vector(runsum(x, 3, na.rm = TRUE))
stopifnot(target1 == current)

## runmean() and runwtsum() :
x <- Rle(c(2, 1, NA, 0, 1, -Inf))
runmean(x, k = 3)
runmean(x, k = 3, na.rm = TRUE)
runwtsum(x, k = 3, wt = c(0.25, 0.50, 0.25))
runwtsum(x, k = 3, wt = c(0.25, 0.50, 0.25), na.rm = TRUE)

## runq() :
runq(x, k = 3, i = 1, na.rm = TRUE) ## smallest value in window
runq(x, k = 3, i = 3, na.rm = TRUE) ## largest value in window

## When na.rm = TRUE, it is possible the number of non-NA
## values in the window will be less than the 'i' specified.
## Here we request the 4th smallest value in the window,
## which tranlates to the value at the 4/5 (0.8) percentile.
x <- Rle(c(1, 2, 3, 4, 5))
runq(x, k=length(x), i=4, na.rm=TRUE)

## The same request on a Rle with two missing values
## finds the value at the 0.8 percentile of the vector
## at the new length of 3 after the NA's have been removed.
## This translates to round((0.8) * 3).
x <- Rle(c(1, 2, 3, NA, NA))
runq(x, k=length(x), i=4, na.rm=TRUE)

Rle-utils Common operations on Rle objects

Description

Common operations on Rle objects.

Group Generics

Rle objects have support for S4 group generic functionality:

Arith "+", "-", "*", "^", "%%", "%/%", "/"
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Compare "==", ">", "<", "!=", "<=", ">="

Logic "&", "|"

Ops "Arith", "Compare", "Logic"

Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod",
"cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan",
"atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh", "gamma", "lgamma",
"digamma", "trigamma"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

See S4groupGeneric for more details.

Summary

In the code snippets below, x is an Rle object:

summary(object, ..., digits = max(3, getOption("digits") - 3)): Summarizes the Rle ob-
ject using an atomic vector convention. The digits argument is used for number formatting
with signif().

Logical Data Methods

In the code snippets below, x is an Rle object:

!x: Returns logical negation (NOT) of x.

which(x): Returns an integer vector representing the TRUE indices of x.

Numerical Data Methods

In the code snippets below, x is an Rle object:

diff(x, lag = 1, differences = 1: Returns suitably lagged and iterated differences of x.

lag An integer indicating which lag to use.
differences An integer indicating the order of the difference.

pmax(..., na.rm = FALSE), pmax.int(..., na.rm = FALSE): Parallel maxima of the Rle input
values. Removes NAs when na.rm = TRUE.

pmin(..., na.rm = FALSE), pmin.int(..., na.rm = FALSE): Parallel minima of the Rle input
values. Removes NAs when na.rm = TRUE.

which.max(x): Returns the index of the first element matching the maximum value of x.

mean(x, na.rm = FALSE): Calculates the mean of x. Removes NAs when na.rm = TRUE.

var(x, y = NULL, na.rm = FALSE): Calculates the variance of x or covariance of x and y if both
are supplied. Removes NAs when na.rm = TRUE.
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cov(x, y, use = "everything"), cor(x, y, use = "everything"): Calculates the covariance and
correlation respectively of Rle objects x and y. The use argument is an optional character
string giving a method for computing covariances in the presence of missing values. This
must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs",
"na.or.complete", or "pairwise.complete.obs".

sd(x, na.rm = FALSE): Calculates the standard deviation of x. Removes NAs when na.rm = TRUE.

median(x, na.rm = FALSE): Calculates the median of x. Removes NAs when na.rm = TRUE.

quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 7, ...): Calculates
the specified quantiles of x.

probs A numeric vector of probabilities with values in [0,1].
na.rm If TRUE, removes NAs from x before the quantiles are computed.
names If TRUE, the result has names describing the quantiles.
type An integer between 1 and 9 selecting one of the nine quantile algorithms detailed in

quantile.
. . . Further arguments passed to or from other methods.

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE, low = FALSE, high = FALSE):
Calculates the median absolute deviation of x.

center The center to calculate the deviation from.
constant The scale factor.
na.rm If TRUE, removes NAs from x before the mad is computed.
low If TRUE, compute the ’lo-median’.
high If TRUE, compute the ’hi-median’.

IQR(x, na.rm = FALSE): Calculates the interquartile range of x.

na.rm If TRUE, removes NAs from x before the IQR is computed.

smoothEnds(y, k = 3): Smooth end points of an Rle y using subsequently smaller medians and
Tukey’s end point rule at the very end.

k An integer indicating the width of largest median window; must be odd.

Character Data Methods

In the code snippets below, x is an Rle object:

nchar(x, type = "chars", allowNA = FALSE): Returns an integer Rle representing the number of
characters in the corresponding values of x.

type One of c("bytes", "chars", "width").
allowNA Should NA be returned for invalid multibyte strings rather than throwing an error?

substr(x, start, stop), substring(text, first, last = 1000000L): Returns a character or
factor Rle containing the specified substrings beginning at start/first and ending at stop/last.

chartr(old, new, x): Returns a character or factor Rle containing a translated version of x.

old A character string specifying the characters to be translated.
new A character string specifying the translations.

tolower(x): Returns a character or factor Rle containing a lower case version of x.
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toupper(x): Returns a character or factor Rle containing an upper case version of x.

sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE):
Returns a character or factor Rle containing replacements based on matches determined by
regular expression matching. See sub for a description of the arguments.

gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE):
Returns a character or factor Rle containing replacements based on matches determined by
regular expression matching. See gsub for a description of the arguments.

paste(..., sep = " ", collapse = NULL): Returns a character or factor Rle containing a concate-
nation of the values in ....

Factor Data Methods

In the code snippets below, x is an Rle object:

levels(x), levels(x) <- value: Gets and sets the factor levels, respectively.

nlevels(x): Returns the number of factor levels.

droplevels(x): Drops unused factor levels.

Author(s)

P. Aboyoun

See Also

• Rle objects.

• S4groupGeneric.

Examples

x <- Rle(10:1, 1:10)
x

sqrt(x)
x^2 + 2 * x + 1
range(x)
sum(x)
mean(x)

z <- c("the", "quick", "red", "fox", "jumps", "over", "the", "lazy", "brown", "dog")
z <- Rle(z, seq_len(length(z)))
chartr("a", "@", z)
toupper(z)
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S4Vectors internals S4Vectors internals

Description

Objects, classes and methods defined in the S4Vectors package that are not intended to be used
directly.

shiftApply-methods Apply a function over subsequences of 2 vector-like objects

Description

shiftApply loops and applies a function overs subsequences of vector-like objects X and Y.

Usage

shiftApply(SHIFT, X, Y, FUN, ..., OFFSET=0L, simplify=TRUE, verbose=FALSE)

Arguments

SHIFT A non-negative integer vector of shift values.

X, Y The vector-like objects to shift.

FUN The function, found via match.fun, to be applied to each set of shifted vectors.

... Further arguments for FUN.

OFFSET A non-negative integer offset to maintain throughout the shift operations.

simplify A logical value specifying whether or not the result should be simplified to a
vector or matrix if possible.

verbose A logical value specifying whether or not to print the i indices to track the
iterations.

Details

Let i be the indices in SHIFT, X_i = window(X, 1 + OFFSET, length(X) - SHIFT[i]), and Y_i
= window(Y, 1 + SHIFT[i], length(Y) - OFFSET). shiftApply calculates the set of FUN(X_i,
Y_i, ...) values and returns the results in a convenient form.

See Also

• The window and aggregate methods for vector-like objects defined in the S4Vectors package.

• Vector and Rle objects.
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Examples

set.seed(0)
lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500),

seq(10, 0.001, length = 500))
xRle <- Rle(rpois(1e7, lambda))
yRle <- Rle(rpois(1e7, lambda[c(251:length(lambda), 1:250)]))

cor(xRle, yRle)
shifts <- seq(235, 265, by=3)
corrs <- shiftApply(shifts, yRle, xRle, FUN=cor)

cor(xRle, yRle)
shiftApply(249:251, yRle, xRle,

FUN=function(x, y) var(x, y) / (sd(x) * sd(y)))

show-utils Display utilities

Description

Low-level utilities that control display of vector-like objects.

Usage

get_showHeadLines()
set_showHeadLines(n=5)

get_showTailLines()
set_showTailLines(n=5)

Arguments

n A non-negative integer that controls the number of vector elements to display.

Details

For the sake of keeping display compact, the show() methods for Vector derivatives only display 5
head and 5 tail vector elements.

However, the number of head and tail elements to display can be changed by setting global options
showHeadLines and showTailLines to the desired values.

get_showHeadLines(), set_showHeadLines(), get_showTailLines(), and set_showTailLines()
are convenience functions for getting/setting these global options.

Value

get_showHeadLines() and get_showTailLines() return the current showHeadLines and showTailLines
values.

set_showHeadLines() and set_showTailLines() return the showHeadLines and showTailLines
values before the change, invisibly.
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See Also

• options in base R.

• Vector objects.

Examples

library(IRanges)
ir <- IRanges(start=11:45, width=10)
ir # displays 5 head and 5 tail ranges

set_showHeadLines(18)
ir # displays 18 head ranges

set_showHeadLines() # back to default

SimpleList-class SimpleList objects

Description

The (non-virtual) SimpleList class extends the List virtual class.

Details

The SimpleList class is the simplest, most generic concrete implementation of the List abstraction.
It provides an implementation that subclasses can easily extend.

In a SimpleList object the list elements are stored internally in an ordinary list.

Constructor

See the List man page for a quick overview of how to construct List objects in general.

The following constructor is provided for SimpleList objects:

SimpleList(...): Takes possibly named objects as elements for the new SimpleList object.

Accessors

Same as for List objects. See the List man page for more information.

Coercion

All the coercions documented in the List man page apply to SimpleList objects.

Subsetting

Same as for List objects. See the List man page for more information.
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Looping and functional programming

Same as for List objects. See ?`List-utils` for more information.

Displaying

When a SimpleList object is displayed, the "Simple" prefix is removed from the real class name of
the object. See classNameForDisplay for more information about this.

See Also

• List objects for the parent class.

• The CompressedList class defined in the IRanges package for a more efficient alternative to
SimpleList.

• The SimpleIntegerList class defined in the IRanges package for a SimpleList subclass exam-
ple.

• The DataFrame class for another SimpleList subclass example.

Examples

## Displaying a SimpleList object:
x1 <- SimpleList(a=letters, i=Rle(22:20, 4:2))
class(x1)

## The "Simple" prefix is removed from the real class name of the
## object:
x1

library(IRanges)
x2 <- IntegerList(11:12, integer(0), 3:-2, compress=FALSE)
class(x2)

## The "Simple" prefix is removed from the real class name of the
## object:
x2

## This is controlled by internal helper classNameForDisplay():
classNameForDisplay(x2)

splitAsList Divide a vector-like object into groups

Description

split divides the data in a vector-like object x into the groups defined by f.

NOTE: This man page is for the split methods defined in the S4Vectors package. See ?base::split
for the default method (defined in the base package).
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Usage

## S4 method for signature 'Vector,ANY'
split(x, f, drop=FALSE, ...)

## S4 method for signature 'ANY,Vector'
split(x, f, drop=FALSE, ...)

## S4 method for signature 'Vector,Vector'
split(x, f, drop=FALSE, ...)

## S4 method for signature 'list,Vector'
split(x, f, drop=FALSE, ...)

splitAsList(x, f, drop=FALSE, ...)

relistToClass(x)

Arguments

x, f 2 vector-like objects of the same length. f will typically be a factor, but not
necessarily.

drop Logical indicating if levels that do not occur should be dropped (if f is a factor).

... Extra arguments passed to any of the first 3 split() methods will be passed to
splitAsList() (see Details below).
Extra arguments passed to the last split() method will be passed to base::split()
(see Details below).
Extra arguments passed to splitAsList() will be passed to the specific method
selected by method dispatch.

Details

The first 3 split() methods just delegate to splitAsList().

The last split() method just does:

split(x, as.vector(f), drop=drop, ...)

splitAsList() is an S4 generic function. It is the workhorse behind the first 3 split() methods
above. It behaves like base::split() except that it returns a List derivative instead of an ordinary
list. The exact class of this List derivative depends only on the class of x and can be obtained
independently with relistToClass(x).

Note that relistToClass(x) is the opposite of elementType(y) in the sense that the former re-
turns the class of the result of relisting (or splitting) x while the latter returns the class of the result
of unlisting (or unsplitting) y. More formally, if x is an object that is relistable and y a list-like
object:

relistToClass(x) is class(relist(x, some_skeleton))
elementType(y) is class(unlist(y))
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Therefore, for any object x for which relistToClass(x) is defined and returns a valid class,
elementType(new(relistToClass(x))) should return class(x).

Value

splitAsList() and the first 3 split() methods behave like base::split() except that they re-
turn a List derivative (of class relistToClass(x)) instead of an ordinary list. Like with base::split(),
all the list elements in this object have the same class as x.

See Also

• The split function in the base package.

• The relist methods and extractList generic function defined in the IRanges package.

• Vector and List objects.

• Rle and DataFrame objects.

Examples

## On an Rle object:
x <- Rle(101:105, 6:2)
split(x, c("B", "B", "A", "B", "A"))

## On a DataFrame object:
groups <- c("group1", "group2")
DF <- DataFrame(

a=letters[1:10],
i=101:110,
group=rep(factor(groups, levels=groups), c(3, 7))

)
split(DF, DF$group)

## Use splitAsList() if you need to split an ordinary vector into a
## List object:
split(letters, 1:2) # ordinary list
splitAsList(letters, 1:2) # List object

stack-methods Stack objects

Description

The S4Vectors package defines stack methods for List and matrix objects.

It also introduces mstack(), a variant of stack where the list is taken as the list of arguments in
....
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Usage

## S4 method for signature 'List'
stack(x, index.var="name", value.var="value", name.var=NULL)

## S4 method for signature 'matrix'
stack(x, row.var=names(dimnames(x))[1L],

col.var=names(dimnames(x))[2L],
value.var="value")

mstack(..., .index.var="name")

Arguments

x A List derivative (for the stack method for List objects), or a matrix (for the
stack method for matrix objects).

index.var, .index.var
A single string specifying the column name for the index (source name) column.

value.var A single string specifying the column name for the values.

name.var TODO
row.var, col.var

TODO

... The objects to stack. Each of them should be a Vector or vector (mixing the
two will not work).

Details

As with stack on a list, stack on a List derivative constructs a DataFrame with two columns:
one for the unlisted values, the other indicating the name of the element from which each value
was obtained. index.var specifies the column name for the index (source name) column and
value.var specifies the column name for the values.

[TODO: Document stack() method for matrix objects.]

See Also

• stack in the utils package.

• List and DataFrame objects.

Examples

library(IRanges)
starts <- IntegerList(c(1, 5), c(2, 8))
ends <- IntegerList(c(3, 8), c(5, 9))
rgl <- IRangesList(start=starts, end=ends)
rangeDataFrame <- stack(rgl, "space", "ranges")
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subsetting-utils Subsetting utilities

Description

Low-level utility functions and classes defined in the S4Vectors package to support subsetting of
vector-like objects. They are not intended to be used directly.

TransposedDataFrame-class

TransposedDataFrame objects

Description

The TransposedDataFrame class is a container for representing a transposed DataFrame object, that
is, a rectangular data container where the rows are the variables and the columns the observations.

A typical situation for using a TransposedDataFrame object is when one needs to store a DataFrame
object in the assay() component of a SummarizedExperiment object but the rows in the DataFrame
object should correspond to the samples and the columns to the features. In this case the DataFrame
object must first be transposed so that the variables in it run "horizontally" instead of "vertically".
See the Examples section at the bottom of this man page for an example.

Details

TransposedDataFrame objects are constructed by calling t() on a DataFrame object.

Like for a DataFrame object, or, more generally, for a data-frame-like object, the length of a Trans-
posedDataFrame object is its number of variables. However, unlike for a data-frame-like object,
its length is also its number of rows, not its number of columns. For this reason, a Transposed-
DataFrame object is NOT considered to be a data-frame-like object.

Author(s)

Hervé Pagès

See Also

• DataFrame objects.

• SummarizedExperiment objects in the SummarizedExperiment package.
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Examples

## A DataFrame object with 3 variables:
df <- DataFrame(aa=101:126, bb=letters, cc=Rle(c(TRUE, FALSE), 13),

row.names=LETTERS)
dim(df)
length(df)
df$aa

tdf <- t(df)
tdf
dim(tdf)
length(tdf)
tdf$aa

t(tdf) # back to 'df'
stopifnot(identical(df, t(tdf)))

tdf$aa <- 0.05 * tdf$aa

x1 <- DataFrame(A=1:5, B=letters[1:5], C=11:15)
y1 <- DataFrame(B=c(FALSE, NA, TRUE), C=c(FALSE, NA, TRUE), A=101:103)
cbind(t(x1), t(y1))
stopifnot(identical(t(rbind(x1, y1)), cbind(t(x1), t(y1))))

## A TransposedDataFrame object can be used in the assay() component of a
## SummarizedExperiment object if the transposed layout is needed i.e. if
## the rows and columns of the original DataFrame object need to be treated
## as the samples and features (in this order) of the SummarizedExperiment
## object:
library(SummarizedExperiment)
se1 <- SummarizedExperiment(df)
se1
assay(se1) # the 3 variables run "vertically"

se2 <- SummarizedExperiment(tdf)
se2
assay(se2) # the 3 variables run "horizontally"

Vector-class Vector objects

Description

The Vector virtual class serves as the heart of the S4Vectors package and has over 90 subclasses. It
serves a similar role as vector in base R.

The Vector class supports the storage of global and element-wise metadata:

1. The global metadata annotates the object as a whole: this metadata is accessed via the metadata
accessor and is represented as an ordinary list;
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2. The element-wise metadata annotates individual elements of the object: this metadata is ac-
cessed via the mcols accessor (mcols stands for metadata columns) and is represented as a
DataFrame object with a row for each element and a column for each metadata variable. Note
that the element-wise metadata can also be NULL.

To be functional, a class that inherits from Vector must define at least a length and a "[" method.

Accessors

In the following code snippets, x is a Vector object.

length(x): Get the number of elements in x.

lengths(x, use.names=TRUE): Get the length of each of the elements.
Note: The lengths method for Vector objects is currently defined as an alias for elementNROWS
(with addition of the use.names argument), so is equivalent to sapply(x, NROW), not to
sapply(x, length).

NROW(x): Equivalent to either nrow(x) or length(x), depending on whether x has dimensions
(i.e. dim(x) is not NULL) or not (i.e. dim(x) is NULL).

names(x), names(x) <- value: Get or set the names of the elements in the Vector.

rename(x, value, ...): Replace the names of x according to a mapping defined by a named
character vector, formed by concatenating value with any arguments in .... The names of
the character vector indicate the source names, and the corresponding values the destination
names. This also works on a plain old vector.

unname(x): removes the names from x, if any.

nlevels(x): Returns the number of factor levels.

mcols(x, use.names=TRUE), mcols(x) <- value: Get or set the metadata columns. If use.names=TRUE
and the metadata columns are not NULL, then the names of x are propagated as the row names
of the returned DataFrame object. When setting the metadata columns, the supplied value
must be NULL or a DataFrame object holding element-wise metadata.

elementMetadata(x, use.names=FALSE), elementMetadata(x) <- value, values(x, use.names=FALSE), values(x) <- value:
Alternatives to mcols functions. Their use is discouraged.

Coercion

as(from, "data.frame"), as.data.frame(from): Coerces from, a Vector, to a data.frame by
first coercing the Vector to a vector via as.vector. Note that many Vector derivatives do
not support as.vector, so this coercion is possible only for certain types.

as.env(x): Constructs an environment object containing the elements of mcols(x).

Subsetting

In the code snippets below, x is a Vector object.

x[i]: When supported, return a new Vector object of the same class as x made of the elements
selected by i. i can be missing; an NA-free logical, numeric, or character vector or factor (as
ordinary vector or Rle object); or a IntegerRanges object.
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x[i, j]: Like the above, but allow the user to conveniently subset the metadata columns thru j.
NOTE TO DEVELOPERS: A Vector subclass with a true 2-D semantic (e.g. SummarizedEx-
periment) needs to overwrite the "[" method for Vector objects. This means that code intended
to operate on an arbitrary Vector derivative x should not use this feature as there is no guar-
antee that x supports it. For this reason this feature should preferrably be used interactively
only.

x[i] <- value: Replacement version of x[i].

Convenience wrappers for common subsetting operations

In the code snippets below, x is a Vector object.

subset(x, subset, select, drop=FALSE, ...): Return a new Vector object made of the subset
using logical vector subset, where missing values are taken as FALSE. TODO: Document
select, drop, and ....

window(x, start=NA, end=NA, width=NA): Extract the subsequence from x that corresponds to
the window defined by start, end, and width. At most 2 of start, end, and width can be
set to a non-NA value, which must be a non-negative integer. More precisely:

• If width is set to NA, then start or end or both can be set to NA. In this case start=NA is
equivalent to start=1 and end=NA is equivalent to end=length(x).

• If width is set to a non-negative integer value, then one of start or end must be set to a
non-negative integer value and the other one to NA.

head(x, n=6L): If n is non-negative, returns the first n elements of the Vector object. If n is
negative, returns all but the last abs(n) elements of the Vector object.

tail(x, n=6L): If n is non-negative, returns the last n elements of the Vector object. If n is nega-
tive, returns all but the first abs(n) elements of the Vector object.

rev(x): Return a new Vector object made of the original elements in the reverse order.

rep(x, times, length.out, each): and rep.int(x, times): Repeats the values in x through
one of the following conventions:

• times: Vector giving the number of times to repeat each element if of length length(x),
or to repeat the whole vector if of length 1.

• length.out: Non-negative integer. The desired length of the output vector.
• each: Non-negative integer. Each element of x is repeated each times.

Concatenation

In the code snippets below, x is a Vector object.

c(x, ..., ignore.mcols=FALSE): Concatenate x and the Vector objects in ... together. Any
object in ... should belong to the same class as x or to one of its subclasses. If not, then
an attempt will be made to coerce it with as(object, class(x), strict=FALSE). NULLs are
accepted and ignored. The result of the concatenation is an object of the same class as x.
Handling of the metadata columns:

• If only one of the Vector objects has metadata columns, then the corresponding metadata
columns are attached to the other Vector objects and set to NA.
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• When multiple Vector objects have their own metadata columns, the user must ensure
that each such DataFrame have identical layouts to each other (same columns defined),
in order for the concatenation to be successful, otherwise an error will be thrown.

• The user can call c(x, ..., ignore.mcols=FALSE) in order to concatenate Vector ob-
jects with differing sets of metadata columns, which will result in the concatenated object
having NO metadata columns.

IMPORTANT NOTE: Be aware that calling c with named arguments (e.g. c(a=x, b=y))
tends to break method dispatch so please make sure that args is an unnamed list when using
do.call(c, args) to concatenate a list of objects together.

append(x, values, after=length(x)): Insert the Vector values onto x at the position given
by after. values must have an elementType that extends that of x.

expand.grid(...): Find cartesian product of every vector in ... and return a data.frame, each
column of which corresponds to an argument. See expand.grid.

Displaying

[FOR ADVANCED USERS OR DEVELOPERS]

Displaying of a Vector object is controlled by 2 internal helpers, classNameForDisplay and showAsCell.

For most objects classNameForDisplay(x) just returns class(x). However, for some objects it
can return the name of a parent class that is more suitable for display because it’s simpler and as
informative as the real class name. See SimpleList objects (defined in this package) and Compress-
edList objects (defined in the IRanges package) for examples of objects for which classNameForDisplay
returns the name of a parent class.

showAsCell(x) produces a character vector parallel to x (i.e. with one string per vector element in
x) that contains compact string representations of each elements in x.

Note that classNameForDisplay and showAsCell are generic functions so developers can imple-
ment methods to control how their own Vector extension gets displayed.

See Also

• Rle, Hits, IRanges and XRaw for example implementations.

• Vector-comparison for comparing, ordering, and tabulating vector-like objects.

• Vector-setops for set operations on vector-like objects.

• Vector-merge for merging vector-like objects.

• Factor for a direct Vector extension that serves a similar role as factor in base R.

• List for a direct Vector extension that serves a similar role as list in base R.

• extractList for grouping elements of a vector-like object into a list-like object.

• DataFrame which is the type of object returned by the mcols accessor.

• The Annotated class, which Vector extends.

Examples

showClass("Vector") # shows (some of) the known subclasses
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Vector-comparison Compare, order, tabulate vector-like objects

Description

Generic functions and methods for comparing, ordering, and tabulating vector-like objects.

Usage

## Element-wise (aka "parallel") comparison of 2 Vector objects
## ------------------------------------------------------------

pcompare(x, y)

## S4 method for signature 'Vector,Vector'
e1 == e2
## S4 method for signature 'Vector,ANY'
e1 == e2
## S4 method for signature 'ANY,Vector'
e1 == e2

## S4 method for signature 'Vector,Vector'
e1 <= e2
## S4 method for signature 'Vector,ANY'
e1 <= e2
## S4 method for signature 'ANY,Vector'
e1 <= e2

## S4 method for signature 'Vector,Vector'
e1 != e2
## S4 method for signature 'Vector,ANY'
e1 != e2
## S4 method for signature 'ANY,Vector'
e1 != e2

## S4 method for signature 'Vector,Vector'
e1 >= e2
## S4 method for signature 'Vector,ANY'
e1 >= e2
## S4 method for signature 'ANY,Vector'
e1 >= e2

## S4 method for signature 'Vector,Vector'
e1 < e2
## S4 method for signature 'Vector,ANY'
e1 < e2
## S4 method for signature 'ANY,Vector'
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e1 < e2

## S4 method for signature 'Vector,Vector'
e1 > e2
## S4 method for signature 'Vector,ANY'
e1 > e2
## S4 method for signature 'ANY,Vector'
e1 > e2

## sameAsPreviousROW()
## -------------------

sameAsPreviousROW(x)

## match()
## -------

## S4 method for signature 'Vector,Vector'
match(x, table, nomatch = NA_integer_,

incomparables = NULL, ...)

## selfmatch()
## -----------

selfmatch(x, ...)

## duplicated() & unique()
## -----------------------

## S4 method for signature 'Vector'
duplicated(x, incomparables=FALSE, ...)

## S4 method for signature 'Vector'
unique(x, incomparables=FALSE, ...)

## %in%
## ----

## S4 method for signature 'Vector,Vector'
x %in% table
## S4 method for signature 'Vector,ANY'
x %in% table
## S4 method for signature 'ANY,Vector'
x %in% table

## findMatches() & countMatches()
## ------------------------------
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findMatches(x, table, select=c("all", "first", "last"), ...)
countMatches(x, table, ...)

## sort()
## ------

## S4 method for signature 'Vector'
sort(x, decreasing=FALSE, na.last=NA, by)

## rank()
## ------

## S4 method for signature 'Vector'
rank(x, na.last = TRUE, ties.method = c("average",

"first", "last", "random", "max", "min"), by)

## xtfrm()
## -------

## S4 method for signature 'Vector'
xtfrm(x)

## table()
## -------

## S4 method for signature 'Vector'
table(...)

Arguments

x, y, e1, e2, table
Vector-like objects.

nomatch See ?base::match.

incomparables The duplicated method for Vector objects does NOT support this argument.
The unique method for Vector objects, which is implemented on top of duplicated,
propagates this argument to its call to duplicated.
See ?base::duplicated and ?base::unique for more information about this
argument for these generics.
The match method for Vector objects does support this argument, see ?base::match
for details.

select Only select="all" is supported at the moment. Note that you can use match
if you want to do select="first". Otherwise you’re welcome to request this
on the Bioconductor mailing list.

ties.method See ?base::rank.
decreasing, na.last

See ?base::sort.
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by A formula referencing the metadata columns by which to sort, e.g., ~ x + y sorts
by column “x”, breaking ties with column “y”.

... A Vector object for table (the table method for Vector objects can only take
one input object).
Otherwise, extra arguments supported by specific methods. In particular:

• The default selfmatch method, which is implemented on top of match,
propagates the extra arguments to its call to match.

• The duplicated method for Vector objects, which is implemented on top
of selfmatch, accepts extra argument fromLast and propagates the other
extra arguments to its call to selfmatch. See ?base::duplicated for
more information about this argument.

• The unique method for Vector objects, which is implemented on top of
duplicated, propagates the extra arguments to its call to duplicated.

• The default findMatches and countMatches methods, which are imple-
mented on top of match and selfmatch, propagate the extra arguments to
their calls to match and selfmatch.

• The sort method for Vector objects, which is implemented on top of order,
only accepts extra argument na.last and propagates it to its call to order.

Details

Doing pcompare(x, y) on 2 vector-like objects x and y of length 1 must return an integer less than,
equal to, or greater than zero if the single element in x is considered to be respectively less than,
equal to, or greater than the single element in y. If x or y have a length != 1, then they are typically
expected to have the same length so pcompare(x, y) can operate element-wise, that is, in that case
it returns an integer vector of the same length as x and y where the i-th element is the result of
compairing x[i] and y[i]. If x and y don’t have the same length and are not zero-length vectors,
then the shortest is first recycled to the length of the longest. If one of them is a zero-length vector
then pcompare(x, y) returns a zero-length integer vector.

selfmatch(x, ...) is equivalent to match(x, x, ...). This is actually how the default ANY
method is implemented. However note that the default selfmatch(x, ...) for Vector x will
typically be more efficient than match(x, x, ...), and can be made even more so if a specific
selfmatch method is implemented for a given subclass.

findMatches is an enhanced version of match which, by default (i.e. if select="all"), returns all
the matches in a Hits object.

countMatches returns an integer vector of the length of x containing the number of matches in
table for each element in x.

Value

For pcompare: see Details section above.

For sameAsPreviousROW: a logical vector of length equal to x, indicating whether each entry of x
is equal to the previous entry. The first entry is always FALSE for a non-zero-length x.

For match and selfmatch: an integer vector of the same length as x.

For duplicated, unique, and %in%: see ?BiocGenerics::duplicated, ?BiocGenerics::unique,
and ?`%in%`.
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For findMatches: a Hits object by default (i.e. if select="all").

For countMatches: an integer vector of the length of x containing the number of matches in table
for each element in x.

For sort: see ?BiocGenerics::sort.

For xtfrm: see ?base::xtfrm.

For table: a 1D array of integer values promoted to the "table" class. See ?BiocGeneric::table
for more information.

Note

The following notes are for developers who want to implement comparing, ordering, and tabulating
methods for their own Vector subclass.

Subclass comparison methods can be split into various categories. The first category must be im-
plemented for each subclass, as these do not have sensible defaults for arbitrary Vector objects:

• The S4Vectors package provides no order method for Vector objects. So calling order on a
Vector derivative for which no specific order method is defined will use base::order, which
calls xtfrm, with in turn calls order, which calls xtfrm, and so on. This infinite recursion of
S4 dispatch eventually results in an error about reaching the stack limit.
To avoid this behavior, a specialized order method needs to be implemented for specific
Vector subclasses (e.g. for Hits and IntegerRanges objects).

• sameAsPreviousROW is default implemented on top of the == method, so will work out-of-the-
box on Vector objects for which == works as expected. However, == is default implemented on
top of pcompare, which itself has a default implementation that relies on sameAsPreviousROW!
This again leads to infinite recursion and an error about the stack limit.
To avoid this behavior, a specialized sameAsPreviousROW method must be implemented for
specific Vector subclasses.

The second category contains methods that have default implementations provided for all Vector
objects and their derivatives. These methods rely on the first category to provide sensible default
behaviour without further work from the developer. However, it is often the case that greater effi-
ciency can be achieved for a specific data structure by writing a subclass-specific version of these
methods.

• The pcompare method for Vector objects is implemented on top of order and sameAsPreviousROW,
and so will work out-of-the-box on Vector derivatives for which order and sameAsPreviousROW
work as expected.

• The xtfrm method for Vector objects is also implemented on top of order and sameAsPreviousROW,
and so will also work out-of-the-box on Vector derivatives for which order and sameAsPreviousROW
work as expected.

• selfmatch is itself implemented on top of xtfrm (indirectly, via grouping) so it will work
out-of-the-box on Vector objects for which xtfrm works as expected.

• The match method for Vector objects is implemented on top of selfmatch, so works out-of-
the-box on Vector objects for which selfmatch works as expected.

(A careful reader may notice that xtfrm and order could be swapped between categories to achieve
the same effect. Similarly, sameAsPreviousROW and pcompare could also be swapped. The exact
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categorization of these methods is left to the discretion of the developer, though this is mostly
academic if both choices are specialized.)

The third category also contains methods that have default implementations, but unlike the sec-
ond category, these defaults are straightforward and generally do not require any specialization for
efficiency purposes.

• The 6 traditional binary comparison operators are: ==, !=, <=, >=, <, and >. The S4Vectors
package provides the following methods for these operators:

setMethod("==", c("Vector", "Vector"),
function(e1, e2) { pcompare(e1, e2) == 0L }

)
setMethod("<=", c("Vector", "Vector"),

function(e1, e2) { pcompare(e1, e2) <= 0L }
)
setMethod("!=", c("Vector", "Vector"),

function(e1, e2) { !(e1 == e2) }
)
setMethod(">=", c("Vector", "Vector"),

function(e1, e2) { e2 <= e1 }
)
setMethod("<", c("Vector", "Vector"),

function(e1, e2) { !(e2 <= e1) }
)
setMethod(">", c("Vector", "Vector"),

function(e1, e2) { !(e1 <= e2) }
)

With these definitions, the 6 binary operators work out-of-the-box on Vector objects for which
pcompare works the expected way. If pcompare is not implemented, then it’s enough to
implement == and <= methods to have the 4 remaining operators (!=, >=, <, and >) work
out-of-the-box.

• The duplicated, unique, and %in% methods for Vector objects are implemented on top of
selfmatch, duplicated, and match, respectively, so they work out-of-the-box on Vector
objects for which selfmatch, duplicated, and match work the expected way.

• Also the default findMatches and countMatches methods are implemented on top of match
and selfmatch so they work out-of-the-box on Vector objects for which those things work
the expected way.

• The sort method for Vector objects is implemented on top of order, so it works out-of-the-
box on Vector objects for which order works the expected way.

• The table method for Vector objects is implemented on top of selfmatch, order, and
as.character, so it works out-of-the-box on a Vector object for which those things work
the expected way.

Author(s)

Hervé Pagès, with contributions from Aaron Lun
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See Also

• The Vector class.

• Hits-comparison for comparing and ordering hits.

• Vector-setops for set operations on vector-like objects.

• Vector-merge for merging vector-like objects.

• IntegerRanges-comparison in the IRanges package for comparing and ordering ranges.

• == and %in% in the base package, and BiocGenerics::match, BiocGenerics::duplicated,
BiocGenerics::unique, BiocGenerics::order, BiocGenerics::sort, BiocGenerics::rank
in the BiocGenerics package for general information about the comparison/ordering operators
and functions.

• The Hits class.

• BiocGeneric::table in the BiocGenerics package.

Examples

## ---------------------------------------------------------------------
## A. SIMPLE EXAMPLES
## ---------------------------------------------------------------------

y <- c(16L, -3L, -2L, 15L, 15L, 0L, 8L, 15L, -2L)
selfmatch(y)

x <- c(unique(y), 999L)
findMatches(x, y)
countMatches(x, y)

## See ?`IntegerRanges-comparison` for more examples (on IntegerRanges
## objects). You might need to load the IRanges package first.

## ---------------------------------------------------------------------
## B. FOR DEVELOPERS: HOW TO IMPLEMENT THE BINARY COMPARISON OPERATORS
## FOR YOUR Vector SUBCLASS
## ---------------------------------------------------------------------

## The answer is: don't implement them. Just implement pcompare() and the
## binary comparison operators will work out-of-the-box. Here is an
## example:

## (1) Implement a simple Vector subclass.

setClass("Raw", contains="Vector", representation(data="raw"))

setMethod("length", "Raw", function(x) length(x@data))

setMethod("[", "Raw",
function(x, i, j, ..., drop) { x@data <- x@data[i]; x }

)

x <- new("Raw", data=charToRaw("AB.x0a-BAA+C"))
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stopifnot(identical(length(x), 12L))
stopifnot(identical(x[7:3], new("Raw", data=charToRaw("-a0x."))))

## (2) Implement a "pcompare" method for Raw objects.

setMethod("pcompare", c("Raw", "Raw"),
function(x, y) {as.integer(x@data) - as.integer(y@data)}

)

stopifnot(identical(which(x == x[1]), c(1L, 9L, 10L)))
stopifnot(identical(x[x < x[5]], new("Raw", data=charToRaw(".-+"))))

Vector-merge Merge vector-like objects

Description

A merge method for vector-like objects.

Usage

## S4 method for signature 'Vector,Vector'
merge(x, y, ..., all=FALSE, all.x=NA, all.y=NA, sort=TRUE)

Arguments

x, y, ... Vector-like objects, typically all of the same class and typically not list-like ob-
jects (even though some list-like objects like IntegerRanges and DNAStringSet
are supported). Duplicated elements in each object are removed with a warning.

all TRUE or FALSE. Whether the vector elements in the result should be the union
(when all=TRUE) or intersection (when all=FALSE) of the vector elements in x,
y, ....

all.x, all.y To be used only when merging 2 objects (binary merge). Both all.x and all.y
must be single logicals. If any of them is NA, then it’s set to the value of all.
Setting both of them to TRUE or both of them to FALSE is equivalent to setting
all to TRUE or to FALSE, respectively (see above).
If all.x is TRUE and all.y is FALSE then the vector elements in the result will
be the unique elements in x. If all.x is FALSE and all.y is TRUE then the vector
elements in the result will be the unique elements in y.

sort Whether to sort the merged result.

Details

This merge method acts much like merge.data.frame, except for 3 important differences:

1. The matching is based on the vector values, not arbitrary columns in a table.

2. Self merging is a no-op if sort=FALSE (or object already sorted) and if the object has no
duplicates.
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3. This merge method accepts an arbitrary number of vector-like objects (n-ary merge).

If some of the objects to merge are list-like objects not supported by the method described here,
then the merging is simply done by calling base::merge() on the objects. This might succeed or
not...

Value

A vector-like object of the same class as the input objects (if they all have the same class) containing
the merged vector values and metadata columns.

See Also

• The Vector class.

• Vector-comparison for comparing and ordering vector-like objects.

• Vector-setops for set operations on vector-like objects.

Examples

library(GenomicRanges)
x <- GRanges(c("chr1:1-1000", "chr2:2000-3000"),

score=c(0.45, 0.1), a1=c(5L, 7L), a2=c(6, 8))
y <- GRanges(c("chr2:150-151", "chr1:1-10", "chr2:2000-3000"),

score=c(0.7, 0.82, 0.1), b1=c(0L, 5L, 1L), b2=c(1, -2, 1))
merge(x, y)
merge(x, y, all=TRUE)
merge(x, y, all.x=TRUE)
merge(x, y, all.y=TRUE)

## Shared metadata columns must agree:
mcols(x)$score[2] <- 0.11
#merge(x, y) # error!

## NAs agree with anything:
mcols(x)$score[2] <- NA
merge(x, y)

Vector-setops Set operations on vector-like objects

Description

Perform set operations on Vector objects.
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Usage

## S4 method for signature 'Vector,Vector'
union(x, y)

## S4 method for signature 'Vector,Vector'
intersect(x, y)

## S4 method for signature 'Vector,Vector'
setdiff(x, y)

## S4 method for signature 'Vector,Vector'
setequal(x, y)

Arguments

x, y Vector-like objects.

Details

The union, intersect, and setdiff methods for Vector objects return a Vector object containing
respectively the union, intersection, and (asymmetric!) difference of the 2 sets of vector elements
in x and y. The setequal method for Vector objects checks for set equality between x and y.

They’re defined as follow:

setMethod("union", c("Vector", "Vector"),
function(x, y) unique(c(x, y))

)
setMethod("intersect", c("Vector", "Vector"),

function(x, y) unique(x[x %in% y])
)
setMethod("setdiff", c("Vector", "Vector"),

function(x, y) unique(x[!(x %in% y)])
)
setMethod("setequal", c("Vector", "Vector"),

function(x, y) all(x %in% y) && all(y %in% x)
)

so they work out-of-the-box on Vector objects for which c, unique, and %in% are defined.

Value

union returns a Vector object obtained by appending to x the elements in y that are not already in
x.

intersect returns a Vector object obtained by keeping only the elements in x that are also in y.

setdiff returns a Vector object obtained by dropping from x the elements that are in y.

setequal returns TRUE if x and y contain the same sets of vector elements and FALSE otherwise.
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union, intersect, and setdiff propagate the names and metadata columns of their first argument
(x).

Author(s)

Hervé Pagès

See Also

• Vector-comparison for comparing and ordering vector-like objects.

• Vector-merge for merging vector-like objects.

• Vector objects.

• BiocGenerics::union, BiocGenerics::intersect, and BiocGenerics::setdiff in the
BiocGenerics package for general information about these generic functions.

Examples

## See ?`Hits-setops` for some examples.

zip-methods Convert between parallel vectors and lists

Description

The zipup and zipdown functions convert between two parallel vectors and a list of doublets (el-
ements of length 2). The metaphor, borrowed from Python’s zip, is that of a zipper. The zipup
function interleaves the elements of the parallel vectors into a list of doublets. The inverse operation
is zipdown, which returns a Pairs object.

Usage

zipup(x, y, ...)
zipdown(x, ...)

Arguments

x, y For zipup, any vector-like object. For zipdown, a doublet list.

... Arguments passed to methods.

Value

For zipup, a list-like object, where every element is of length 2. For zipdown, a Pairs object.

See Also

• Pairs objects.
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Examples

z <- zipup(1:10, Rle(1L, 10))
pairs <- zipdown(z)
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active (FilterRules-class), 25
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aggregate,data.frame-method
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aggregate,List-method

(aggregate-methods), 3
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aggregate,Vector-method
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as.factor,Factor-method (Factor-class),

20
as.factor,Rle-method (Rle-class), 56
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as.list,Rle-method (Rle-class), 56
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as.raw,Vector-method (Vector-class), 74
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(TransposedDataFrame-class), 73
bindROWS, 5
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bindROWS,LLint-method (LLint-class), 48
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chartr,ANY,ANY,Rle-method (Rle-utils),

62
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class:DataFrame (DataFrame-class), 7
class:DataFrame_OR_NULL (S4Vectors
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class:Factor (Factor-class), 20
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class:Hits (Hits-class), 28
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internals), 66
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coerce,ANY,AsIs-method (S4Vectors

internals), 66
coerce,ANY,DataFrame-method

(DataFrame-class), 7
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coerce,ANY,Rle-method (Rle-class), 56
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(Vector-class), 74

coerce,Vector,integer-method
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(DataFrame-class), 7

combineCols (RectangularData-class), 54
combineCols,DataFrame-method

(DataFrame-combine), 11
combineRows (RectangularData-class), 54
combineRows,DataFrame-method

(DataFrame-combine), 11
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(RectangularData-class), 54
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complete.cases,DataFrame-method

(DataFrame-utils), 16
Complex,Rle-method (Rle-utils), 62
CompressedGRangesList, 41
CompressedList, 41–43, 69, 77
coolcat (show-utils), 67
cor,Rle,Rle-method (Rle-utils), 62
countLnodeHits (Hits-class), 28
countLnodeHits,Hits-method

(Hits-class), 28
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countMatches (Vector-comparison), 78
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(Vector-comparison), 78
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countRnodeHits (Hits-class), 28
countRnodeHits,Hits-method

(Hits-class), 28
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cov,Rle,Rle-method (Rle-utils), 62

data.frame, 8, 56
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DataFrame (DataFrame-class), 7
DataFrame-class, 7
DataFrame-combine, 10, 11, 56
DataFrame-comparison, 14
DataFrame-utils, 10, 12, 16
DataFrame_OR_NULL (S4Vectors

internals), 66
DataFrame_OR_NULL-class (S4Vectors

internals), 66
DataFrameFactor

(DataFrameFactor-class), 17
DataFrameFactor-class, 17
decode (Rle-class), 56
decode,ANY-method (Rle-class), 56
decode,Rle-method (Rle-class), 56
DelayedMatrix, 54, 55
DFrame (DataFrame-class), 7
DFrame-class (DataFrame-class), 7
diff,Rle-method (Rle-utils), 62
diff.Rle (Rle-utils), 62
dim,DataFrameFactor-method

(DataFrameFactor-class), 17
dim,RectangularData-method

(RectangularData-class), 54
dimnames,DataFrameFactor-method

(DataFrameFactor-class), 17
dimnames,RectangularData-method

(RectangularData-class), 54
dimnames<-,DataFrame-method

(DataFrame-class), 7
dimnames<-,RectangularData-method

(RectangularData-class), 54
dimnames<-,TransposedDataFrame-method

(TransposedDataFrame-class), 73
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droplevels,DFrame-method
(DataFrame-class), 7

droplevels,Factor-method
(Factor-class), 20

droplevels,List-method (List-utils), 45
droplevels,Rle-method (Rle-utils), 62
droplevels.Factor (Factor-class), 20
droplevels.List (List-utils), 45
droplevels.Rle (Rle-utils), 62
duplicated, 39, 80, 81, 84
duplicated,DataFrame-method

(DataFrame-comparison), 14
duplicated,Rle-method (Rle-class), 56
duplicated,Vector-method

(Vector-comparison), 78
duplicated.DataFrame

(DataFrame-comparison), 14
duplicated.Vector (Vector-comparison),

78
duplicatedIntegerPairs (integer-utils),
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duplicatedIntegerQuads (integer-utils),
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elementMetadata (Vector-class), 74
elementMetadata,Vector-method

(Vector-class), 74
elementMetadata<- (Vector-class), 74
elementMetadata<-,Vector-method

(Vector-class), 74
elementNROWS, 75
elementNROWS (List-class), 41
elementNROWS,ANY-method (List-class), 41
elementNROWS,List-method (List-class),
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elementType (List-class), 41
elementType,List-method (List-class), 41
elementType,vector-method (List-class),
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end, 3, 4
end,Rle-method (Rle-class), 56
endoapply (List-utils), 45
eval,FilterRules,ANY-method

(FilterRules-class), 25
evalSeparately, 24, 25
evalSeparately (FilterRules-class), 25
evalSeparately,FilterRules-method

(FilterRules-class), 25
expand, 19
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expand,DataFrame-method (expand), 19
expand,Vector-method (expand), 19
expand.grid, 77
expand.grid (Vector-class), 74
expand.grid,Vector-method

(Vector-class), 74
expression_OR_function

(FilterRules-class), 25
expression_OR_function-class

(FilterRules-class), 25
extractCOLS (subsetting-utils), 73
extractCOLS,DataFrame-method

(DataFrame-class), 7
extractCOLS,TransposedDataFrame-method

(TransposedDataFrame-class), 73
extractList, 42, 43, 71, 77
extractROWS (subsetting-utils), 73
extractROWS,ANY,ANY-method

(subsetting-utils), 73
extractROWS,array,RangeNSBS-method

(subsetting-utils), 73
extractROWS,data.frame,RangeNSBS-method

(subsetting-utils), 73
extractROWS,DataFrame,ANY-method

(DataFrame-class), 7
extractROWS,Rle,ANY-method (Rle-class),
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extractROWS,Rle,NSBS-method

(Rle-class), 56
extractROWS,Rle,RangeNSBS-method

(Rle-class), 56
extractROWS,Rle,RleNSBS-method

(Rle-class), 56
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(Hits-class), 28
extractROWS,TransposedDataFrame,ANY-method

(TransposedDataFrame-class), 73
extractROWS,vector_OR_factor,RangeNSBS-method

(subsetting-utils), 73

Factor, 17, 18, 77
Factor (Factor-class), 20
factor, 20, 22, 77
Factor-class, 20
FactorToClass (Factor-class), 20
FactorToClass,vector_OR_Vector-method

(Factor-class), 20
Filter,List-method (List-utils), 45
FilterMatrix, 27

FilterMatrix (FilterMatrix-class), 24
FilterMatrix-class, 24
FilterRules, 24, 25
FilterRules (FilterRules-class), 25
filterRules (FilterMatrix-class), 24
filterRules,FilterMatrix-method

(FilterMatrix-class), 24
FilterRules-class, 25
Find,List-method (List-utils), 45
findMatches (Vector-comparison), 78
findMatches,ANY,ANY-method

(Vector-comparison), 78
findMatches,ANY,missing-method

(Vector-comparison), 78
findOverlapPairs, 52, 53
findOverlaps, 28, 31, 35, 36, 52
findRun (Rle-class), 56
findRun,Rle-method (Rle-class), 56
first (Pairs-class), 52
first,Pairs-method (Pairs-class), 52
first<- (Pairs-class), 52
first<-,Pairs-method (Pairs-class), 52
fold (S4Vectors internals), 66
from (Hits-class), 28
from,Hits-method (Hits-class), 28

get_showHeadLines, 10
get_showHeadLines (show-utils), 67
get_showTailLines (show-utils), 67
getListElement (subsetting-utils), 73
getListElement,DataFrame-method

(DataFrame-class), 7
getListElement,List-method

(List-class), 41
getListElement,list-method

(subsetting-utils), 73
getListElement,TransposedDataFrame-method

(TransposedDataFrame-class), 73
GRangesFactor, 22
GRangesList, 41
grouping, 82
gsub, 65
gsub,ANY,ANY,Rle-method (Rle-utils), 62

head (Vector-class), 74
head,RectangularData-method

(RectangularData-class), 54
head,Vector-method (Vector-class), 74
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head.RectangularData
(RectangularData-class), 54

head.Vector (Vector-class), 74
Hits, 32–36, 53, 77, 81, 82, 84
Hits (Hits-class), 28
Hits-class, 28, 53
Hits-comparison, 31, 32, 35, 84
Hits-examples, 31
Hits-setops, 34
HitsList (HitsList-class), 35
HitsList-class, 35
horizontal_slot_names

(RectangularData-class), 54
horizontal_slot_names,DFrame-method

(DataFrame-class), 7

integer, 49
integer-utils, 37
integer_OR_LLint (LLint-class), 48
integer_OR_LLint-class (LLint-class), 48
integer_OR_raw (Factor-class), 20
integer_OR_raw-class (Factor-class), 20
IntegerList, 41, 43
IntegerRanges, 75, 82, 85
IntegerRanges-comparison, 84
IntegerRangesList, 3, 35, 36, 41, 43
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intersect,ANY,Rle-method (Rle-class), 56
intersect,Rle,ANY-method (Rle-class), 56
intersect,Rle,Rle-method (Rle-class), 56
intersect,Vector,Vector-method

(Vector-setops), 86
intersect.Vector (Vector-setops), 86
IQR,Rle-method (Rle-utils), 62
IRanges, 22, 43, 58, 77
is.finite, 39
is.finite,Rle-method (Rle-class), 56
is.LLint (LLint-class), 48
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is.na,DataFrame-method

(DataFrame-utils), 16
is.na,LLint-method (LLint-class), 48
is.na,Rle-method (Rle-class), 56
is.na,Vector-method (Vector-class), 74
is.unsorted, 39
is.unsorted,Rle-method (Rle-class), 56
isConstant (isSorted), 39
isConstant,array-method (isSorted), 39
isConstant,integer-method (isSorted), 39

isConstant,numeric-method (isSorted), 39
isEmpty (List-class), 41
isEmpty,ANY-method (List-class), 41
isEmpty,List-method (List-class), 41
isRedundantHit (Hits-class), 28
isSelfHit (Hits-class), 28
isSequence (integer-utils), 37
isSingleInteger (S4Vectors internals),
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isSingleNumber (S4Vectors internals), 66
isSingleNumberOrNA (S4Vectors

internals), 66
isSingleString (S4Vectors internals), 66
isSingleStringOrNA (S4Vectors

internals), 66
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isStrictlySorted (isSorted), 39
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(subsetting-utils), 73
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(subsetting-utils), 73
isStrictlySorted,Rle-method

(Rle-class), 56
isStrictlySorted,RleNSBS-method

(Rle-class), 56
isTRUEorFALSE (S4Vectors internals), 66

lapply, 46–48
lapply,List-method (List-utils), 45
lapply,SimpleList-method

(SimpleList-class), 68
length,DataFrame-method

(DataFrame-class), 7
length,LLint-method (LLint-class), 48
length,NSBS-method (subsetting-utils),

73
length,RangeNSBS-method

(subsetting-utils), 73
length,Rle-method (Rle-class), 56
length,RleNSBS-method (Rle-class), 56
length,TransposedDataFrame-method

(TransposedDataFrame-class), 73
length,Vector-method (Vector-class), 74
lengths,Vector-method (Vector-class), 74
levels, 18
levels (Factor-class), 20
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levels,Rle-method (Rle-utils), 62
levels.Rle (Rle-utils), 62
levels<- (Factor-class), 20
levels<-,Factor-method (Factor-class),
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levels<-,Rle-method (Rle-utils), 62
List, 3, 4, 15, 26, 45–48, 68–72, 77
List (List-class), 41
list, 41, 77
List-class, 41
List-utils, 43, 45
list_OR_List (List-class), 41
list_OR_List-class (List-class), 41
LLint (LLint-class), 48
LLint-class, 48
LogicalList, 43

mad,Rle-method (Rle-utils), 62
mad.Rle (Rle-utils), 62
make_zero_col_DFrame (DataFrame-class),

7
makeActiveBinding, 9
makeClassinfoRowForCompactPrinting

(show-utils), 67
makeNakedCharacterMatrixForDisplay

(show-utils), 67
makeNakedCharacterMatrixForDisplay,ANY-method

(show-utils), 67
makeNakedCharacterMatrixForDisplay,DataFrame-method

(DataFrame-class), 7
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(Hits-class), 28
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(Pairs-class), 52
makeNakedCharacterMatrixForDisplay,TransposedDataFrame-method

(TransposedDataFrame-class), 73
makePrettyMatrixForCompactPrinting

(show-utils), 67
Map,List-method (List-utils), 45
mapply, 47, 48
match, 14, 15, 80, 84
match (Vector-comparison), 78
match,ANY,Rle-method (Rle-class), 56
match,DataFrame,DataFrame-method

(DataFrame-comparison), 14
match,Factor,Factor-method

(Factor-class), 20
match,Hits,Hits-method

(Hits-comparison), 32

match,Pairs,Pairs-method (Pairs-class),
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match,Rle,ANY-method (Rle-class), 56
match,Rle,Rle-method (Rle-class), 56
match,Vector,Vector-method

(Vector-comparison), 78
matchIntegerPairs (integer-utils), 37
matchIntegerQuads (integer-utils), 37
Math,Rle-method (Rle-utils), 62
Math2,Rle-method (Rle-utils), 62
matrix, 24
max,NSBS-method (subsetting-utils), 73
max,RangeNSBS-method

(subsetting-utils), 73
mcols (Vector-class), 74
mcols,Vector-method (Vector-class), 74
mcols<- (Vector-class), 74
mcols<-,Vector-method (Vector-class), 74
mean,Rle-method (Rle-utils), 62
mean.Rle (Rle-utils), 62
median,Rle-method (Rle-utils), 62
median.Rle (Rle-utils), 62
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NROW, 6
nrow,DataFrame-method

(DataFrame-class), 7
nrow,TransposedDataFrame-method

(TransposedDataFrame-class), 73
nrun (Rle-class), 56
nrun,Rle-method (Rle-class), 56
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73
NSBS,logical-method (subsetting-utils),
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Pairs (Pairs-class), 52
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pcompare,Hits,Hits-method
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(Pairs-class), 52
pmax,Rle-method (Rle-utils), 62
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sort,SortedByQueryHits-method
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subsetByFilter (FilterRules-class), 25
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substr,Rle-method (Rle-utils), 62
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toupper,Rle-method (Rle-utils), 62
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transform,DataFrame-method

(DataFrame-utils), 16
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transform.Vector (Vector-class), 74
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TransposedDataFrame
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values<-,Vector-method (Vector-class),

74
var,Rle,missing-method (Rle-utils), 62
var,Rle,Rle-method (Rle-utils), 62
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vector, 74
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which,Rle-method (Rle-utils), 62
which.max,Rle-method (Rle-utils), 62
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width,Rle-method (Rle-class), 56
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window (Vector-class), 74
window,Vector-method (Vector-class), 74
window.Vector (Vector-class), 74
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within,List-method (List-utils), 45
wmsg (S4Vectors internals), 66
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xtfrm,Rle-method (Rle-class), 56
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zip-methods, 88
zipdown (zip-methods), 88
zipdown,ANY-method (zip-methods), 88
zipdown,List-method (zip-methods), 88
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zipup,ANY,ANY-method (zip-methods), 88
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